Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 89(9): 2440-2456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747959

RESUMO

1,4-Dioxane concentration in most contaminated water is much less than 1 mg/L, which cannot sustain the growth of most reported 1,4-dioxane-metabolizing pure cultures. These pure cultures were isolated following enrichment of mixed cultures at high concentrations (20 to 1,000 mg/L). This study is based on a different strategy: 1,4-dioxane-metabolizing mixed cultures were enriched by periodically spiking 1,4-dioxane at low concentrations (≤1 mg/L). Five 1,4-dioxane-metabolizing pure strains LCD6B, LCD6D, WC10G, WCD6H, and WD4H were isolated and characterized. The partial 16S rRNA gene sequencing showed that the five bacterial strains were related to Dokdonella sp. (98.3%), Acinetobacter sp. (99.0%), Afipia sp. (99.2%), Nitrobacter sp. (97.9%), and Pseudonocardia sp. (99.4%), respectively. Nitrobacter sp. WCD6H is the first reported 1,4-dioxane-metabolizing bacterium in the genus of Nitrobacter. The net specific growth rates of these five cultures are consistently higher than those reported in the literature at 1,4-dioxane concentrations <0.5 mg/L. Compared to the literature, our newly discovered strains have lower half-maximum-rate concentrations (1.8 to 8.2 mg-dioxane/L), lower maximum specific 1,4-dioxane utilization rates (0.24 to 0.47 mg-dioxane/(mg-protein ⋅ d)), higher biomass yields (0.29 to 0.38 mg-protein/mg-dioxane), and lower decay coefficients (0.01 to 0.02 d-1). These are characteristics of microorganisms living in oligotrophic environments.


Assuntos
Dioxanos , Dioxanos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , RNA Ribossômico 16S/genética , Filogenia , Poluentes Químicos da Água/metabolismo
2.
Toxics ; 12(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38668487

RESUMO

The extensive use of per- and polyfluoroalkyl substances (PFASs) in industrial consumer products has led to groundwater contamination, raising concerns for human health and the environment. These persistent chemicals exist in different forms with varying properties, which makes their removal challenging. In this study, we assessed the effectiveness of three different ß-cyclodextrin (ß-CD) adsorbents at removing a mixture of PFASs, including anionic, neutral, and zwitterionic compounds, at neutral pH. We calculated linear partition coefficient (Kd) values to quantify the adsorption affinity of each PFAS. ß-CD polymers crosslinked with hexamethylene diisocyanate (ß-CD-HDI) and epichlorohydrin (ß-CD-EPI) displayed some adsorption of PFASs. Benzyl chloride ß-CD (ß-CD-Cl), an adsorbent that had not been previously reported, was also synthesized and tested for PFAS adsorption. ß-CD-Cl exhibited higher PFAS adsorption than ß-CD-HDI and ß-CD-EPI, with log Kd values ranging from 1.9 L·g-1 to 3.3 L·g-1. ß-CD-Cl displayed no affinity for zwitterionic compounds, as opposed to ß-CD-HDI and ß-CD-EPI, which removed N-dimethyl ammonio propyl perfluorohexane sulfonamide (AmPr-FHxSA). A comparison between Kd values and the log Kow of PFAS confirmed the significant role of hydrophobic interactions in thee adsorption mechanism. This effect was stronger in ß-CD-Cl, compared to ß-CD-HDI and ß-CD-EPI. While no effect of PFAS charge was observed in ß-CD-Cl, some influence of charge was observed in ß-CD-HDI and ß-CD-EPI, with less negative compounds being more adsorbed. The adsorption of PFASs by ß-CD-Cl was similar in magnitude to that of other adsorbents proposed in literature. However, it offers the advantage of not containing fluorine, unlike many commonly proposed adsorbents.

3.
Nano Lett ; 22(13): 5503-5509, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35713473

RESUMO

Catalytic CO2 conversion to renewable fuel is of utmost importance to establish a carbon-neutral society. Bioelectrochemical CO2 reduction, in which a solid cathode interfaces with CO2-reducing bacteria, represents a promising approach for renewable and sustainable fuel production. The rational design of biocatalysts in the biohybrid system is imperative to effectively reduce CO2 into valuable chemicals. Here, we introduce methanol adapted Sporomusa ovata (S. ovata) to enhance the slow metabolic activity of wild-type microorganisms to our semiconductive silicon nanowires (Si NWs) array for efficient CO2 reduction. The adapted whole-cell catalysts enable an enhancement of CO2 fixation with a superior faradaic efficiency on the poised Si NWs cathode. The synergy of the high-surface-area cathode and the adapted strain achieves a CO2-reducing current density of 0.88 ± 0.11 mA/cm2, which is 2.4-fold higher than the wild-type strain. This new generation of biohybrids using adapted S. ovata also decreases the charge transfer resistance at the cathodic interface and facilitates the faster charge transfer from the solid electrode to bacteria.


Assuntos
Dióxido de Carbono , Nanofios , Bactérias/metabolismo , Dióxido de Carbono/química , Catálise , Eletrodos , Firmicutes , Metanol , Silício
4.
Proc Natl Acad Sci U S A ; 119(26): e2122364119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727971

RESUMO

Solar-driven bioelectrosynthesis represents a promising approach for converting abundant resources into value-added chemicals with renewable energy. Microorganisms powered by electrochemical reducing equivalents assimilate CO2, H2O, and N2 building blocks. However, products from autotrophic whole-cell biocatalysts are limited. Furthermore, biocatalysts tasked with N2 reduction are constrained by simultaneous energy-intensive autotrophy. To overcome these challenges, we designed a biohybrid coculture for tandem and tunable CO2 and N2 fixation to value-added products, allowing the different species to distribute bioconversion steps and reduce the individual metabolic burden. This consortium involves acetogen Sporomusa ovata, which reduces CO2 to acetate, and diazotrophic Rhodopseudomonas palustris, which uses the acetate both to fuel N2 fixation and for the generation of a biopolyester. We demonstrate that the coculture platform provides a robust ecosystem for continuous CO2 and N2 fixation, and its outputs are directed by substrate gas composition. Moreover, we show the ability to support the coculture on a high-surface area silicon nanowire cathodic platform. The biohybrid coculture achieved peak faradaic efficiencies of 100, 19.1, and 6.3% for acetate, nitrogen in biomass, and ammonia, respectively, while maintaining product tunability. Finally, we established full solar to chemical conversion driven by a photovoltaic device, resulting in solar to chemical efficiencies of 1.78, 0.51, and 0.08% for acetate, nitrogenous biomass, and ammonia, correspondingly. Ultimately, our work demonstrates the ability to employ and electrochemically manipulate bacterial communities on demand to expand the suite of CO2 and N2 bioelectrosynthesis products.


Assuntos
Dióxido de Carbono , Firmicutes , Fixação de Nitrogênio , Fotossíntese , Rodopseudomonas , Acetatos/metabolismo , Amônia , Dióxido de Carbono/metabolismo , Técnicas de Cocultura , Ecossistema , Firmicutes/crescimento & desenvolvimento , Firmicutes/metabolismo , Nitrogênio/metabolismo , Rodopseudomonas/crescimento & desenvolvimento , Rodopseudomonas/metabolismo
5.
Science ; 376(6594): 698-699, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549431

RESUMO

Artificial fluorous channels outperform aquaporins in water permeation.


Assuntos
Aquaporinas , Materiais Biomiméticos , Purificação da Água , Água , Aquaporinas/química , Materiais Biomiméticos/química , Nanopartículas , Purificação da Água/métodos
6.
Water Res ; 206: 117773, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34695668

RESUMO

Combined organic and inorganic fouling is a primary barrier constraining the performance of reverse osmosis (RO) membrane. In this work, we conducted a systematic study focusing on the synergetic fouling effects of silica and humic acid (HA) in RO process, and found the critical silica concentration where the fouling pattern changed qualitatively. When the silica concentration was lower than 6 mM at a typical HA concentration of 50 mg·L-1, no severe fouling was observed, while silica reaching this critical point could cause severe synergetic fouling with HA. Concentrated silica above the critical point acted as the prior foulant with marginal fouling effect caused by HA. A variety of solutions and surface-based characterizations were performed to elucidate the synergistic fouling responsibility for silica and HA. Our study suggests that the carboxylic groups from HA formed hydrogen bonds with silica hydrate, inducing silica adsorption onto HA aggregates at low silica particle concentrations. The HA network was bridged together to form large foulants due to the silica-silica interaction above the silica critical concentration. These mechanisms were further confirmed by molecular dynamics simulations. This study provides an in-depth insight into the combined organic-inorganic fouling and can serve as a guideline to optimize feed conditions in order to mitigate fouling of RO in wastewater reusing industry.


Assuntos
Substâncias Húmicas , Purificação da Água , Membranas Artificiais , Simulação de Dinâmica Molecular , Osmose , Dióxido de Silício
7.
Nat Mater ; 19(3): 347-354, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31988513

RESUMO

Biological membranes are ideal for separations as they provide high permeability while maintaining high solute selectivity due to the presence of specialized membrane protein (MP) channels. However, successful integration of MPs into manufactured membranes has remained a significant challenge. Here, we demonstrate a two-hour organic solvent method to develop 2D crystals and nanosheets of highly packed pore-forming MPs in block copolymers (BCPs). We then integrate these hybrid materials into scalable MP-BCP biomimetic membranes. These MP-BCP nanosheet membranes maintain the molecular selectivity of the three types of ß-barrel MP channels used, with pore sizes of 0.8 nm, 1.3 nm, and 1.5 nm. These biomimetic membranes demonstrate water permeability that is 20-1,000 times greater than that of commercial membranes and 1.5-45 times greater than that of the latest research membranes with comparable molecular exclusion ratings. This approach could provide high performance alternatives in the challenging sub-nanometre to few-nanometre size range.


Assuntos
Proteínas de Membrana/química , Membranas Artificiais , Nanoestruturas/química , Modelos Moleculares , Permeabilidade , Porosidade , Conformação Proteica em Folha beta , Solventes/química , Fatores de Tempo
9.
Nat Nanotechnol ; 15(1): 73-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844288

RESUMO

Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks. Quantitative transport studies revealed that PAH[4]s can transport >109 water molecules per second per molecule, which is comparable to aquaporin water channels. The performance of these channels exceeds the upper bound limit of current desalination membranes by a factor of ~104, as illustrated by the water/NaCl permeability-selectivity trade-off curve. PAH[4]'s unique properties of a high water/solute permselectivity via cooperative water-wire formation could usher in an alternative design paradigm for permeable membrane materials in separations, energy production and barrier applications.


Assuntos
Nanoestruturas/química , Peptídeos/química , Água/química , Aquaporinas/química , Calixarenos/química , Membranas Artificiais , Simulação de Dinâmica Molecular , Permeabilidade , Fenóis/química
10.
Environ Sci Technol ; 53(15): 8985-8993, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31189066

RESUMO

Hydrophobicity and molecular weight (MW) are two fundamental properties of dissolved organic matter (DOM) in wastewater treatment systems. This study proposes fluorescence Stokes shift and specific fluorescence intensity (SFI) as novel indicators of hydrophobicity and MW. These indicators originate from the energy gap and photon efficiency of the fluorescence process and can be readily extracted from a fluorescence excitation-emission matrix (EEM). The statistical linkages between these indicators and hydrophobicity/MW were explored through investigation of DOM across 10 full-scale membrane bioreactors treating municipal wastewater. Stokes shift was found to exhibit a general rule among the hydrophobicity components in the order of hydrophilic substances (HIS) < hydrophobic acids (HOA) < hydrophobic bases (HOB). The Stokes shift of 1.2 µm-1 is a critical border, above which the relative fluorescence correlated significantly with the HOA-related content (Pearson's r = 0.8). With regard to MW distribution (<1, 1-10, 10-100, and >100 kDa), SFI was found to be the most sensitive to the change of MW of <1 kDa proportion, especially at the excitation/emission wavelengths of 200-320/310-550 nm (r > 0.9). Hydrophobicity-related π conjugation and MW-dependent light exposure might be responsible for the correlations. These fluorescence indicators may be useful for convenient monitoring of DOM in wastewater treatment systems.


Assuntos
Poluentes Químicos da Água , Reatores Biológicos , Substâncias Húmicas , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Espectrometria de Fluorescência , Águas Residuárias
11.
Environ Sci Technol ; 52(19): 11251-11258, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30189132

RESUMO

This study systematically investigated the correlations between fluorescence distributions characterized by the excitation-emission matrix (EEM) and hydrophobic/hydrophilic composition of dissolved organic matter (DOM) in membrane bioreactors (MBRs). On the basis of samples from 10 full-scale MBRs, we performed point-to-point comparisons among different components using an EEM fluorescence quotient (FQ) method and obtained a hydrophobic/hydrophilic fluorophore distribution map via Wilcoxon signed rank test. Hydrophobic acids/bases (HOA/HOB) concentrated in the low-wavelength region [excitation wavelength (Ex) < 235 nm], while hydrophilic substances (HIS) were enriched in the region of Ex > 235 nm [especially with emission wavelength (Em) = 300-360 nm]. Quantitatively, EEM regional contribution to whole wavelength fluorescence was found to significantly correlate with the hydrophobic/hydrophilic proportions of DOM, with Pearson's coefficients of 0.94 and 0.78 ( p < 0.01) for HOA and HIS, respectively. We established a linear regression model showing the HOA proportion as a function of the EEM regional contribution at (Ex, Em) = (200-285, 340-465 nm), with R2 = 0.876, which was validated via leave-one-out cross-validation and Monte Carlo simulation. This study shows a statistically hydrophobicity-dependent fluorescence property across different MBRs, and it might be applied to provide a quick estimation of hydrophobic/hydrophilic composition of DOM in wastewater treatment systems based on EEM monitoring.


Assuntos
Compostos Orgânicos , Poluentes Químicos da Água , Reatores Biológicos , Substâncias Húmicas , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Fluorescência , Águas Residuárias
12.
Nat Commun ; 9(1): 3304, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108220

RESUMO

The original version of this Article contained an error in the spelling of the author Woochul Song, which was incorrectly given as Woochul C. Song. This has been corrected in both the PDF and HTML versions of the Article.

13.
Proc Natl Acad Sci U S A ; 115(35): 8694-8699, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104388

RESUMO

As water availability becomes a growing challenge in various regions throughout the world, desalination and wastewater reclamation through technologies such as reverse osmosis (RO) are becoming more important. Nevertheless, many open questions remain regarding the internal structure of thin-film composite RO membranes. In this work, fully aromatic polyamide films that serve as the active layer of state-of-the-art water filtration membranes were investigated using high-angle annular dark-field scanning transmission electron microscopy tomography. Reconstructions of the 3D morphology reveal intricate aspects of the complex microstructure not visible from 2D projections. We find that internal voids of the active layer of compressed commercial membranes account for less than 0.2% of the total polymer volume, contrary to previously reported values that are two orders of magnitude higher. Measurements of the local variation in polyamide density from electron tomography reveal that the polymer density is highest at the permeable surface for the two membranes tested and establish the significance of surface area on RO membrane transport properties. The same type of analyses could provide explanations for different flux variations with surface area for other types of membranes where the density is distributed differently. Thus, 3D reconstructions and quantitative analyses will be crucial to characterize the complex morphology of polymeric membranes used in next-generation water-purification membranes.

14.
Faraday Discuss ; 209(0): 179-191, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29972389

RESUMO

The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)-block-poly(ethylene oxide)-block-poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes.


Assuntos
Materiais Biomiméticos/química , Reagentes de Ligações Cruzadas/química , Bicamadas Lipídicas/química , Polímeros/química , Reagentes de Ligações Cruzadas/síntese química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/síntese química , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
15.
Faraday Discuss ; 209(0): 193-204, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29999507

RESUMO

Artificial water channels are a practical alternative to biological water channels for achieving exceptional water permeability and selectivity in a stable and scalable architecture. However, channel-based membrane fabrication faces critical barriers such as: (1) increasing pore density to achieve measurable gains in permeability while maintaining selectivity, and (2) scale-up to practical membrane sizes for applications. Recently, we proposed a technique to prepare channel-based membranes using peptide-appended pillar[5]arene (PAP[5]) artificial water channels, addressing the above challenges. These multi-layered PAP[5] membranes (ML-PAP[5]) showed significantly improved water permeability compared to commercial membranes with similar molecular weight cut-offs. However, due to the distinctive pore structure of water channels and the layer-by-layer architecture of the membrane, the separation behavior is unique and was still not fully understood. In this paper, two unique selectivity trends of ML-PAP[5] membranes are discussed from the perspectives of channel geometry, ion exclusion, and linear molecule transport.

16.
Nat Commun ; 9(1): 2294, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895901

RESUMO

Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m-2 h-1 bar-1 compared with 4-7 L m-2 h-1 bar-1) over similarly rated commercial membranes.


Assuntos
Membranas Artificiais , Simulação de Dinâmica Molecular , Polímeros/química , Água/química , Aquaporinas/química , Simulação por Computador , Detergentes/química , Bicamadas Lipídicas/química , Lipossomos/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Peso Molecular , Permeabilidade , Porosidade , Sais/química
17.
Adv Biosyst ; 1(7): e1700053, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32646175

RESUMO

Membrane protein and membrane protein-mimic functionalized materials are rapidly gaining interest across a wide range of applications, including drug screening, DNA sequencing, drug delivery, sensors, water desalination, and bioelectronics. In these applications, material performance is highly dependent on activity-per-protein and protein packing density in bilayer and bilayer-like structures collectively known as biomimetic membranes. However, a clear understanding of, and accurate tools to study these properties of biomimetic membranes does not exist. This paper presents methods to evaluate membrane protein compatibility with biomimetic membrane materials. The methods utilized provide average single protein activity, and for the first time, provide experimentally quantifiable measures of the chemical and physical compatibility between proteins (and their mimics) and membrane materials. Water transport proteins, rhodopsins, and artificial water channels are reconstituted into the full range of current biomimetic membrane matrices to evaluate the proposed platform. Compatibility measurement results show that both biological and artificial water channels tested largely preserve their single protein water transport rates in biomimetic membranes, while their reconstitution density is variable, leading to different overall membrane permeabilities. It is also shown that membrane protein insertion efficiency inversely correlates with both chemical and physical hydrophobicity mismatch between membrane protein and the membrane matrix.

18.
Bioresour Technol ; 222: 100-106, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27716561

RESUMO

Wastewater treatment plants are thought to be potential reservoirs of antibiotic resistance genes. In this study, GeoChip was used for analyzing multiple antibiotic resistance genes, including four multidrug efflux system gene groups and three ß-lactamase genes in ten large-scale membrane bioreactors (MBRs) for municipal wastewater treatment. Results revealed that the diversity of antibiotic genes varied a lot among MBRs, but about 40% common antibiotic resistance genes were existent. The average signal intensity of each antibiotic resistance group was similar among MBRs, nevertheless the total abundance of each group varied remarkably and the dominant resistance gene groups were different in individual MBR. The antibiotic resistance genes majorly derived from Proteobacteria and Actinobacteria. Further study indicated that TN, TP and COD of influent, temperature and conductivity of mixed liquor were significant (P<0.05) correlated to the multiple antibiotic resistance genes distribution in MBRs.


Assuntos
Reatores Biológicos/microbiologia , Resistência Microbiana a Medicamentos/genética , Eliminação de Resíduos Líquidos/métodos , Actinobacteria/efeitos dos fármacos , Actinobacteria/genética , Antibacterianos , China , Membranas Artificiais , Proteobactérias/efeitos dos fármacos , Proteobactérias/genética , Águas Residuárias/microbiologia , beta-Lactamases/genética
19.
J Am Chem Soc ; 138(16): 5403-9, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27063409

RESUMO

Aquaporins (AQPs) are biological water channels known for fast water transport (∼10(8)-10(9) molecules/s/channel) with ion exclusion. Few synthetic channels have been designed to mimic this high water permeability, and none reject ions at a significant level. Selective water translocation has previously been shown to depend on water-wires spanning the AQP pore that reverse their orientation, combined with correlated channel motions. No quantitative correlation between the dipolar orientation of the water-wires and their effects on water and proton translocation has been reported. Here, we use complementary X-ray structural data, bilayer transport experiments, and molecular dynamics (MD) simulations to gain key insights and quantify transport. We report artificial imidazole-quartet water channels with 2.6 Špores, similar to AQP channels, that encapsulate oriented dipolar water-wires in a confined chiral conduit. These channels are able to transport ∼10(6) water molecules/s, which is within 2 orders of magnitude of AQPs' rates, and reject all ions except protons. The proton conductance is high (∼5 H(+)/s/channel) and approximately half that of the M2 proton channel at neutral pH. Chirality is a key feature influencing channel efficiency.

20.
Proc Natl Acad Sci U S A ; 112(32): 9810-5, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216964

RESUMO

Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(± 0.3) × 10(-14) cm(3)/s or 3.5(± 1.0) × 10(8) water molecules per s, which is in the range of AQPs (3.4 ∼ 40.3 × 10(8) water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10(8) water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼ 10(7) water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼ 2.6 × 10(5) pores per µm(2)) is two orders of magnitude higher than that of CNT membranes (0.1 ∼ 2.5 × 10(3) pores per µm(2)). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.


Assuntos
Canais Iônicos/química , Água/química , Aquaporinas/química , Íons , Modelos Moleculares , Simulação de Dinâmica Molecular , Nanotubos de Carbono , Peptídeos/química , Permeabilidade , Lipossomas Unilamelares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...