Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1003359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299723

RESUMO

The development of multifunctional nanomaterials with bacterial imaging and killing activities is of great importance for the rapid diagnosis and timely treatment of bacterial infections. Herein, peptide-functionalized gold nanoclusters (CWR11-AuNCs) with high-intensity red fluorescence were successfully synthesized via a one-step method using CWR11 as a template and by optimizing the ratio of CWR11 to HAuCl4, reaction time, pH, and temperature. The CWR11-AuNCs bound to bacteria and exhibited selective fluorescence microscopy imaging properties, which is expected to provide a feasible method for locating and imaging bacteria in complex in vivo environments. In addition, CWR11-AuNCs not only retained the antibacterial and bactericidal activities of CWR11 but also exhibited certain inhibitory or killing effects on gram-negative and gram-positive bacteria and biofilms. The MICs of CWR11-AuNCs against Escherichia coli and Staphylococcus aureus were 178 and 89 µg/ml, respectively. Surprisingly, cell viability in the CWR11-AuNC-treated group was greater than that in the CWR11-treated group, and the low cytotoxicity exhibited by the CWR11-AuNCs make them more promising for clinical applications.

2.
Colloids Surf B Biointerfaces ; 212: 112349, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35101823

RESUMO

Rapid and portable detection of foodborne pathogens is of great significance for food safety and public health. The colorimetric methods based on naked-eye have been demonstrated to be a suitable qualitative method for point-of-care testing (POCT). However, analytical instruments like a microplate reader must be needed for the quantitative assay. To overcome its limitation, we herein report a novel photothermal method for foodborne pathogens based on the photothermal effect of aggregated mercaptophenylboronic acid-functionalized AuNPs (MPBA-AuNPs) induced by MPBA to translate the colorimetric detection into a simple temperature measurement using thermometers as the readout. The aggregated AuNPs show higher photothermal conversion efficiency than well-separated AuNPs under 660 nm laser irradiation. In the presence of bacteria, MPBA-AuNPs will attach to the surface of bacteria and keep separated from aggregation induced by excess MPBA, resulting in a lower temperature increase under 660 nm laser irradiation. Using E. coli O157:H7 as a model target, a good linear relationship is observed between temperature increase and bacteria concentration from 1.00 × 105-1.00 × 109 cfu mL-1 (R2 = 0.9877) with a detection limit of 1.97 × 104 cfu mL-1, which is three orders of magnitude lower than of the MPBA-AuNPs-based colorimetric assays. The proposed photothermal method provided a universal platform for rapid and portable detection of broad-spectrum bacteria strains in real samples.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Ouro , Limite de Detecção , Termômetros
3.
Front Bioeng Biotechnol ; 9: 795415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118055

RESUMO

Rapid detection of pathogens and assessment of antimicrobial susceptibility is of great importance for public health, especially in resource-limiting regions. Herein, we developed a rapid, portable, and universal detection method for bacteria using AgNPs-invertase complexes and the personal glucose meter (PGM). In the presence of bacteria, the invertase could be released from AgNPs-invertase complexes where its enzyme activity of invertase was inhibited. Then, the enzyme activity of invertase was restored and could convert sucrose into glucose measured by a commercially PGM. There was a good linear relationship between PGM signal and concentration of E. coli or S. aureus as the bacteria model with high sensitivity. And our proposed biosensor was proved to be a rapid and reliable method for antimicrobial susceptibility testing within 4 h with consistent results of Minimum Inhibitory Concentrations (MICs) testing, providing a portable and convenient method to treat infected patients with correct antibiotics and reduce the production of antibiotic-resistant bacteria, especially for resource-limiting settings.

4.
Bull Math Biol ; 74(3): 666-87, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21989567

RESUMO

We investigate a reaction-diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction-diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction-diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.


Assuntos
Modelos Biológicos , Animais , Difusão , Extremidades/embriologia , Proteínas Hedgehog/fisiologia , Deformidades Congênitas dos Membros/etiologia , Camundongos , Morfogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...