Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(17)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37125717

RESUMO

Organometallic phosphors are an important class of emissive materials used in high-efficiency organic light-emitting devices. However, problems of low photostability arise for blue-emitting phosphors due to chemical and environmental degradation and triplet quenching processes. Various approaches have been developed to improve the photostability of such phosphors, including the design of new organometallic molecules and control of host-dopant composition in thin films. Here, we demonstrate a different approach for improving the photostability of blue organometallic phosphors that uses localized surface plasmon resonances to increase the triplet recombination rate. The increased recombination rate improves the photostability of the phosphor due to the reduction in triplet quenching pathways. We show that the lifetime of phosphorescence is decreased significantly by nanoparticle-based plasmonic surfaces, which improves the photostability of the blue organometallic phosphor by up to a factor of 3.6. Other plasmonic surfaces are also tested and exhibit less significant photostability improvements due to a reduced spectral overlap of the plasmonic modes with the emitter and lower mode confinement. The use of plasmonic surfaces to improve phosphor photostability at blue wavelengths is distinct from other approaches because it involves modification to the local electromagnetic environment of the phosphor rather than modifications to the phosphor molecular structure or the emitting material composition.

2.
Chem Sci ; 11(7): 1814-1824, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34123274

RESUMO

Developing rare-earth element (REE) free yellow phosphors that can be excited by 455 nm blue light will help to decrease the environmental impact of manufacturing energy efficient white light-emitting diodes (WLEDs), decrease their cost of production, and accelerate their adoption across the globe. Luminescent metal-organic frameworks (LMOFs) demonstrate strong potential for use as phosphor materials and have been investigated intensively in recent years. However, the majority are not suitable for the current WLED technology due to their lack of blue excitability. Therefore, designing highly efficient blue-excitable, yellow-emitting, REE free LMOFs is much needed. With an internal quantum yield of 76% at 455 nm excitation, LMOF-231 is the most efficient blue-excitable yellow-emitting LMOF phosphor reported to date. Spectroscopic studies suggest that this quantum yield could be further improved by narrowing the material's bandgap. Based on this information and guided by DFT calculations, we apply a ligand substitution strategy to produce a semi-fluorinated analogue of LMOF-231, LMOF-305. With an internal quantum yield of 88% (λ em = 550 nm) under 455 nm excitation, this LMOF sets a new record for luminescent efficiency in yellow-emitting, blue-excitable, REE free LMOF phosphors. Temperature-dependent and polarized photoluminescence (PL) studies have provided insight on the mechanism of emission and origin of the significant PL enhancement.

3.
J Am Chem Soc ; 139(27): 9281-9290, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28625054

RESUMO

Extensive research has been pursued to develop low-cost and high-performance functional inorganic-organic hybrid materials for clean/renewable energy related applications. While great progress has been made in the recent years, some key challenges remain to be tackled. One major issue is the generally poor stability of these materials, which originates from relatively fragile/weak bonds between inorganic and organic constituents. Herein, we report a unique "all-in-one" (AIO) approach in constructing robust structures with desired properties. Such approach allows formation of both ionic and coordinate bonds within a molecular cluster, which greatly enhances structural stability while maintaining the molecular identity of the cluster and its high luminescence. The novel AIO structures are composed of various anionic (CumIm+n)n- clusters and cationic N-ligands. They exhibit high luminescence efficiency, significantly improved chemical, thermal and moisture stability, and excellent solution processability. Both temperature dependent photoluminescence experiments and DFT calculations are performed to investigate the luminescence origin and emission mechanism of these materials, and their suitability as energy-saving LED lighting phosphors is assessed. This study offers a new material designing strategy that may be generalized to many other material classes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...