Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Heliyon ; 10(11): e32478, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933978

RESUMO

Vertebrate testosterone, an androgen present in the testes, is essential for male fertility. Vertebrate-type steroid hormones have been identified in insects, but their function remains unknown. Insect vitellogenin (Vg) is usually a female-specific protein involved in reproductive processes. However, males of some species, such as the green lacewing Chrysopa pallens, have Vg. Here, we demonstrated that the knockdown of C. pallens male Vg by RNAi significantly shortened the lifespan of males, suppressed the reproduction of post-mating females, and strikingly reduced the abundance of several immune-related compounds, including testosterone. LC-MS/MS revealed that C. pallens male testosterone had the same structure and molecular mass as vertebrate testosterone. Topical testosterone application partially restored the lifespan of Vg-deficient males and the reproduction of post-mating females. These results suggest that vertebrate-type testosterone maintains male longevity and female reproduction under the control of the male Vg in C. pallens.

2.
Pest Manag Sci ; 80(7): 3665-3674, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38459943

RESUMO

BACKGROUND: The ladybeetle, Coccinella septempunctata, an important predator, is widely used to control aphids, whiteflies, mites, thrips, and lepidopteran pests. Diapause control technology is key to extending C. septempunctata shelf-life and commercialization. Lipid accumulation is a major feature of reproductive diapause, but the function of AKH signaling as a regulator of lipid mobilization in reproductive diapause remains unclear. This study aimed to identify and characterize AKH and AKHR genes, and clarify their functions in reproductive diapause. RESULTS: The relative expression levels of CsAKH and CsAKHR were the highest in the head and fat body, respectively, and were significantly decreased under diapause conditions, both in developmental stages and tissues (head, midgut, fat body, and ovary). Furthermore, CsAKH and CsAKHR expression was increased significantly after juvenile hormone (JH) injection, but CsMet silencing significantly inhibited CsAKH and CsAKHR expression, whereas CsMet knockdown blocked the induction effect of JH. CsAKH and CsAKHR knockdown significantly reduced water content, increased lipid storage, and promoted the expression of genes related to lipid synthesis, but significantly blocked ovarian development, and induced forkhead box O (FOXO) gene expression in C. septempunctata under reproduction conditions. By contrast, injection of AKH peptide significantly inhibited FOXO expression, reduced lipid storage, and increased water content in C. septempunctata under diapause conditions. CONCLUSION: These results indicate that CsAKH and CsAKHR are involved in the regulation of lipid accumulation and ovarian development during diapause in C. septempunctata, and provide a promising target for manipulating C. septempunctata diapause. © 2024 Society of Chemical Industry.


Assuntos
Besouros , Diapausa de Inseto , Hormônios de Inseto , Proteínas de Insetos , Oligopeptídeos , Ácido Pirrolidonocarboxílico , Reprodução , Transdução de Sinais , Animais , Hormônios de Inseto/metabolismo , Hormônios de Inseto/genética , Besouros/fisiologia , Besouros/metabolismo , Besouros/crescimento & desenvolvimento , Besouros/genética , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Oligopeptídeos/metabolismo , Feminino , Metabolismo dos Lipídeos
3.
Sci Total Environ ; 924: 171329, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462006

RESUMO

Phenolic compounds, abundant secondary metabolites in plants, profoundly influence soil ecosystems, plant growth, and interactions with herbivores. In this study, we explore the intricate relationships between phenolics, soil microbes, and gall formation in Ageratina adenophora (A. adenophora), an invasive plant species in China known for its allelopathic traits. Using metabolomic and microbial profiling, significant differences in soil microbial composition and metabolite profiles were observed between bulk and rhizosphere soil samples. Phenolics influenced bacterial communities, with distinct microbial populations enriched in each soil type. Additionally, phenolics impacted soil metabolic processes, with variations observed in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis between different soil treatments. Analysis of phenolic content in plant and soil samples revealed considerable variations, with higher concentrations observed in certain plant tissues and soil types. Bioactive phenols extracted from plant and soil samples were identified using gas chromatography/mass spectrometry (GC-MS), providing insights into the diverse chemical composition of these compounds. Furthermore, the effects of phenolics on plant growth and gall formation were investigated. Phenols exhibited both stimulatory and inhibitory effects on plant growth, with optimal concentrations promoting emergence but higher concentrations hindering growth. Gall formation was influenced by phenolic concentrations, leading to structural alterations in stem tissue and gall morphology. Histochemical analysis revealed starch and lipid accumulation in gall tissues, indicating metabolic changes induced by phenolics. The presence of phenolics disrupted tissue structures and influenced vascular bundle orientation in gall tissues. Overall, our study highlights the multifaceted roles of phenolic compounds in soil ecosystems, plant development, and gall formation, facilitating the utilization of secondary metabolites in agriculture.


Assuntos
Ecossistema , Solo , Solo/química , Desenvolvimento Vegetal , Plantas/metabolismo , Fenóis/metabolismo , Dispersão Vegetal , Microbiologia do Solo , Raízes de Plantas/metabolismo
4.
Alzheimers Res Ther ; 15(1): 179, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849016

RESUMO

BACKGROUND: Current treatments for Alzheimer's disease (AD) have largely failed to yield significant therapeutic benefits. Novel approaches are desperately needed to help address this immense public health issue. Data suggests that early intervention at the first stages of mild cognitive impairment may have a greater chance for success. The calcineurin (CN)-Pin1 signaling cascade can be selectively targeted with tacrolimus (FK506), a highly specific, FDA-approved CN inhibitor used safely for > 20 years in solid organ transplant recipients. AD prevalence was significantly reduced in solid organ recipients treated with FK506. METHODS: Time release pellets were used to deliver constant FK506 dosage to APP/PS1 mice without deleterious manipulation or handling. Immunofluorescence, histology, molecular biology, and behavior were used to evaluate changes in AD pathology. RESULTS: FK506 can be safely and consistently delivered into juvenile APP/PS1 mice via time-release pellets to levels roughly seen in transplant patients, leading to the normalization of CN activity and reduction or elimination of AD pathologies including synapse loss, neuroinflammation, and cognitive impairment. Pin1 activity and function were rescued despite the continuing presence of high levels of transgenic Aß42. Indicators of neuroinflammation including Iba1 positivity and IL-6 production were also reduced to normal levels. Peripheral blood mononuclear cells (PBMC) obtained during treatment or splenocytes isolated at euthanasia activated normally after mitogens. CONCLUSIONS: Low-dose, constant FK506 can normalize CNS CN and Pin1 activity, suppress neuroinflammation, and attenuate AD-associated pathology without blocking peripheral IL-2 responses making repurposed FK506 a viable option for early, therapeutic intervention in AD.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Calcineurina/metabolismo , Modelos Animais de Doenças , Interleucina-2/imunologia , Interleucina-2/metabolismo , Leucócitos Mononucleares/patologia , Camundongos Transgênicos , Doenças Neuroinflamatórias , Fenótipo , Presenilina-1/genética , Linfócitos T/patologia , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico
5.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895115

RESUMO

Insects that feed on various host plants possess diverse xenobiotic adaptations; however, the underlying mechanisms are poorly understood. In the present study, we used Grapholita molesta, which shifts feeding sites from peach shoots to apple fruits, as a model to explore the effects of shifts in host plant diet on the profiles of cytochrome P450s and the gut bacteria microbiome, as well as their effects on biopesticide adaptation. We found that the sensitivity of the fruit-feeding G. molesta to emamectin benzoate biopesticide was significantly lower than that of the shoot-feeding larvae. We also found that the P450 enzyme activity and the expression of nine cytochrome P450s were enhanced in G. molesta fed on Fuji apples compared to those fed on peach shoots. The survival rates of G. molesta exposed to emamectin benzoate significantly decreased as each of three of four emamectin benzoate-inducted cytochrome P450 genes were silenced. Furthermore, we discovered the gut bacteria dynamics of G. molesta changed with the host shift and the structure of the gut bacteria microbiome was determined by the final diet ingested; additionally, the dysbiosis of the gut microbiota induced by antibiotics could significantly increase the sensitivity to emamectin benzoate. Taken together, our results suggest that the expression of P450s and the composition of the gut bacteria microbiome promote adaptation to emamectin benzoate in G. molesta, providing new insights into the molecular mechanisms underlying xenobiotic adaptation in this notorious pest.


Assuntos
Microbioma Gastrointestinal , Malus , Mariposas , Prunus persica , Animais , Agentes de Controle Biológico , Xenobióticos , Mariposas/genética , Larva , Dieta , Sistema Enzimático do Citocromo P-450/genética , Bactérias
6.
Pest Manag Sci ; 79(8): 2891-2901, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36947672

RESUMO

BACKGROUND: Telenomus remus (Nixon) is a dominant natural enemy controlling the invasive pest Spodoptera frugiperda (J. E. Smith). Continuous rearing of egg parasitoids on alternative hosts is crucial for mass production and cost reduction. However, to ensure the effectiveness of natural enemy products against target pests in the field, it is necessary to evaluate the parasitoid quality during the mass-rearing process. Despite the successful rearing of this parasitoid on the alternative host Spodoptera litura (Fabricius) eggs, less attention has been paid to the quality of parasitoids continuously reared for multiple generations. Therefore, we evaluated the performance of T. remus reared on S. litura eggs for 30 generations via morphological characteristics, flight ability, and life table analysis. RESULTS: Wing length, wing width, body length, and right hind tibia length of T. remus did not differ among the different generations. However, the body length of female parasitoids was significantly longer than that of males for any generation. Although the proportion of 'flyers' and 'deformed' T. remus varied among generations, the flight ability did not decline significantly after rearing on S. litura eggs. Moreover, T. remus continuously reared on S. litura eggs maintained stable parasitism performance and life table parameters on the target host S. frugiperda eggs. CONCLUSION: S. litura eggs are suitable hosts for the mass-rearing of T. remus. This study can be subsequently used to guide the production and facilitate the application of T. remus in the control of S. frugiperda. © 2023 Society of Chemical Industry.


Assuntos
Produtos Biológicos , Besouros , Himenópteros , Animais , Masculino , Feminino , Spodoptera
7.
Pest Manag Sci ; 79(5): 1876-1884, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36654480

RESUMO

BACKGROUND: Circadian rhythms are physical and behavioral changes that follow the 24-h cycle of Earth's light and temperature and are regulated by clock genes. Timeless (Tim) has been identified as a canonical clock gene in some insects, however, its functions have been little studied in lepidopteran pests. RESULTS: To investigate Tim (HaTim) gene function in Helicoverpa armigera, an important lepidopteran pest, we obtained the HaTim mutant using the CRISPR/Cas9 gene editing system. Our results showed that the transcript levels of HaTim rhythmically peaked at night in heads of the wild larvae and adult, and the diel expression of HaTim was sensitive to photoperiod and temperature. The expression rhythms of other clock genes, such as HaPer, HaCry1, HaCry2 and HaCwo, were disturbed in the HaTim mutant larvae, as that stage is a sensitivity period for diapause induction. Fifth-instar wild-type larvae could be induced to pupate in diapause under a short-day photoperiod and low temperature, however, fifth-instar HaTim mutant larvae could not be induced under the same conditions. In addition, the emergence of wild-type adults peaked early at night, but the rhythm was disturbed in the HaTim mutant with arrhythmic expression of some clock genes, such as HaPer, HaCry1 and HaCwo in adults. CONCLUSION: Our results suggest that the clock gene Tim is involved in diapause induction and adult emergence in H. armigera, and is a potential target gene for controlling pest. © 2023 Society of Chemical Industry.


Assuntos
Diapausa , Mariposas , Animais , Ritmo Circadiano/genética , Mariposas/genética , Fotoperíodo , Larva/genética , Larva/metabolismo , Mutação
8.
Mol Ecol ; 32(5): 1169-1182, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479957

RESUMO

Baculoviruses are highly evolved parasites that genetically reprogram the developing phenotype of their host insect to produce a vessel for virus replication and dispersal. Here we show that larvae of Helicoverpa armigera infected with HearNPV accumulate glucose in the midgut, which reduces food consumption and alters the dynamics of pathways governing metabolism and immunity. We used transcriptomics to demonstrate the role of the insulin signalling pathway in regulating the HearNPV infection process. Dietary restriction decreased mortality of infected larvae and reduced viral replication prior to death, whereas dietary supplementation with glucose produced the opposite effects. The expression of most tricarboxylic acid cycle (TCA) and energy metabolism-related genes was reduced in infected larvae, whereas the expression of immunity-, glycolysis- and insulin-related genes was enhanced. Treatment of infected larvae with insulin increased their survival, reduced viral replication and inhibited climbing behaviour compared to a control treatment with DMSO, whereas RNAi suppression of the insulin receptor gene produced the opposite effects. Inhibition of glycolysis with dichloroacetate (DCA) promoted viral replication and accelerated larval death, but inhibition of the TCA cycle with 2-deoxyglucose (2-DG) did not, although both diminished climbing behaviour. This work demonstrates that successful baculovirus infections hinge on metabolic reprogramming of the host and concurrent suppression of immune responses in the larval midgut, with the insulin signalling pathway mediating a trade-off between glucose metabolism and virus resistance.


Assuntos
Insulinas , Mariposas , Nucleopoliedrovírus , Animais , Larva/genética , Nucleopoliedrovírus/genética , Mariposas/genética , Replicação Viral , Glucose
9.
Sci Total Environ ; 851(Pt 2): 158120, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987246

RESUMO

The widespread adoption of Bt crops expressing insecticidal proteins derived from Bacillus thuringiensis has created a need to assess the potential effects of these toxins on non-target organisms, especially species such as Arma custos, a generalist predator that provides important biological control services in many field crops in Asia. Direct dietary exposure of A. custos to Cry1Ah and Vip3Aa proteins produced no adverse effects on life history traits, despite continuous exposure throughout development and early adult life to concentrations significantly higher than the Bt protein concentration likely encountered by A.custos in the field, even when feeding directly on Bt plants. Enzyme-linked immunosorbent assay confirmed the presence of Bt proteins in A. custos midguts, but quantitative real-time PCR analysis of 12 genes associated with detoxification, antioxidative responses, immune responses, and metabolism revealed no significant changes in expression in adult bugs. Indirect exposure to these toxins via consumption of intoxicated prey, larvae of Helicoverpa armigera (Hübner), likewise produced no negative impacts on survival, development, adult weight, or female fecundity in either the F0 (exposed) or F1 (unexposed) generation, but female fresh weight was reduced in the F0 generation by the Cry1Ah (50 µg/g) treatment. Finally, a competitive binding assay with labelled protein and a ligand blotting assay both demonstrated that the Cry1Ah protein could not bind to receptors on the midgut brush border membrane vesicles (BBMVs) of A. custos adults. Therefore, we conclude that Cry1Ah and Vip3Aa proteins are unlikely to have significant negative effects on A. custos populations if employed as plant-incorporated protectants in field crops.


Assuntos
Bacillus thuringiensis , Heterópteros , Animais , Bacillus thuringiensis/genética , Ligantes , Proteínas de Bactérias/genética , Toxinas de Bacillus thuringiensis , Endotoxinas/toxicidade , Endotoxinas/genética , Larva , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/genética
10.
Int J Biol Macromol ; 216: 446-455, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810848

RESUMO

Although neuropeptide corazonin (Crz) has been identified in numerous insect species, the research about its function in regulation of reproduction is still in its infancy. Herein, we characterized the Crz (GmolCrz) and its receptor (GmolCrzR) to investigate their reproductive function in Grapholita molesta. Both molecular docking result and cell-based receptor activity assay showed that GmolCrz could interact with GmolCrzR. Additionally, spatial expression patterns of GmolCrz and GmolCrzR in males were evaluated. Knockdown of GmolCrz or GmolCrzR significantly lengthened copulation duration and decreased fertility in males. In these males, we found that the production of sperm was normal, while the content of accessory gland proteins (Acps) in the accessory gland (AG) was strongly diminished. Furthermore, knockdown of GmolCrz or GmolCrzR in males had no effect on sperm and Acps transfer to females. RNA-seq and gene expression analyses further confirmed that genes involved in serine-type endopeptidase activity were significantly downregulated in the AG upon GmolCrzR knockdown. Finally, sperm activation assays demonstrated that this process was disrupted in the spermatophore of females mated with GmolCrz or GmolCrzR knockdown males, which may cause the decreased fertility in males. Our findings provide new insights into the functions of Crz signaling in a Lepidopteran insect.


Assuntos
Mariposas , Neuropeptídeos , Animais , Feminino , Masculino , Simulação de Acoplamento Molecular , Mariposas/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Reprodução , Sêmen/metabolismo
11.
Pest Manag Sci ; 78(8): 3540-3550, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35587569

RESUMO

BACKGROUND: The cotton bollworm, Helicoverpa armigera, is a worldwide polyphagous pest, causing huge economic losses in vegetable, cotton and corn crops, among others. Owing to long-term exposure to Bacillus thuringiensis (Bt) toxins, evolution of resistance has been detected in this pest. As a conservative and effective neurotransmitter, dopamine (DA) has an important role in insect growth and development. In this study, we investigated the regulatory functions of DA and its associated non-coding RNA in metamorphosis in H. armigera. RESULTS: Expression profiles indicated that DA and DA pathway genes were highly expressed during larval-pupal metamorphosis in H. armigera. RNA interference and pharmacological experiments confirmed that tyrosine hydroxylase (TH), dopa decarboxylase, vesicular amine transporter and DA receptor 2 are critical genes related to the development of H. armigera from larvae to pupae. We also found that miR-14 and miR-2766 targeted the 3' untranslated region to post-transcriptionally regulate HaTH function. Application of miR-2766 and miR-14 antagomirs significantly increased levels of HaTH transcripts and proteins, while injection of miR-2766 and miR-14 agomirs not only suppressed messenger RNA and protein levels of HaTH, but also resulted in defective pupation in H. armigera. CONCLUSION: These results suggest that DA deficiency inhibits larval-pupal metamorphosis in H. armigera. Potentially, DA pathway genes and their microRNAs could be used as a novel target for H. armigera management. © 2022 Society of Chemical Industry.


Assuntos
MicroRNAs , Mariposas , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Larva , MicroRNAs/genética , MicroRNAs/metabolismo , Pupa/genética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Front Microbiol ; 13: 853797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464956

RESUMO

The current study was to investigate the modulatory effects of total dietary fiber (TDF) levels on cecal morphology and the response of microbiota to maintain gut health for duck growth. A total of 192 14-day-old male white Pekin ducks were randomly allocated to three dietary groups and fed diets, containing 12.4, 14.7, and 16.2% TDF, respectively, until 35 days under the quantitative feed intake. Each dietary group consisted of eight replicate cages of eight birds. The results revealed that 14.7 and 16.2% TDF groups significantly promoted growth performance and improved villus height, the ratio of villus to crypt, muscle layer thickness, and goblet cells per villus of cecum in ducks. qPCR results showed that the transcriptional expression of Claudin-1, Muc2, IGF-1, and SLC16A1 was significantly upregulated in cecum in 14.7 and 16.2% TDF groups. Meanwhile, the concentration of IGF-1 in circulating was significantly increased in 14.7 and 16.2% TDF groups while that of DAO was significantly decreased in 16.2% TDF group. Furthermore, the concentrations of butyrate, isobutyrate, valerate, and isovalerate in cecum were conspicuously improved in 14.7 and 16.2% TDF groups while that of propionate was significantly decreased. In addition, the concentrations of butyrate, isobutyrate, valerate, and isovalerate in cecum presented negative correlations with the concentration of DAO in circulating. 16S rRNA gene sequencing results showed that the 14.7% TDF group importantly elevated the microbial richness. Simultaneously, butyrate-producing bacteria like the family Lachnospiraceae, Oscillospiraceae, and Erysipelatoclostridiaceae were enriched as biomarkers in the 16.2% TDF group. Correlation network analysis revealed that the associations between specific bacteria and short-chain fatty acids (SCFAs) induced by different TDF levels, and the correlations among bacteria were also witnessed. For example, the genus Monoglobus and CHKCI002 showed a positive correlation with butyrate, and there was a positively coexistent association between Monoglobus and CHKCI002. In summary, these data revealed that increasing the TDF level could enhance the cecal morphology and drive cecal species-specific of SCFAs in ducks.

13.
Ecotoxicol Environ Saf ; 234: 113414, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35305350

RESUMO

Helicoverpa armigera single nucleopolyhedrovirus (HearNPV) has a long coevolutionary history with its host, exerting profound effects on larval development, physiology and immune responses, although the mechanisms mediating these effects remain unclear. We demonstrate that HearNPV infection constrains the growth and development of larvae by inducing high levels of reactive oxygen species (ROS), which increase the expression of forkhead box O transcription factor (FoxO). FoxO upregulates the expression of peroxiredoxin 1 (Prx1) which serves to regulate larval development and immune responses following HearNPV infection. Collectively, our results provide novel insights into the role of Prx1 in larval development and immunity subsequent to HearNPV infection. Further investigation of the oxidative stress induced by HearNPV in H. armigera and its interactions with host immunity could yield novel insights useful in agricultural pest control.

14.
Mol Ecol ; 31(9): 2752-2765, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35258140

RESUMO

Baculoviruses can induce climbing behaviour in their caterpillar hosts to ensure they die at elevated positions to enhance virus transmission, providing an excellent model to study parasitic manipulation of host behaviour. Here, we demonstrate that climbing behaviour occurred mostly during daylight hours, and that the height at death of Helicoverpa armigera single nucleopolyhedrovirus (HearNPV)-infected larvae increases with the height of the light source. Phototaxic and electroretinogram (ERG) responses were enhanced after HearNPV-infection in host larvae, and ablation of stemmata in infected larvae prevented both phototaxis and climbing behaviour. Through transcriptome and quantitative PCR, we confirmed that two opsin genes (a blue light-sensitive gene, HaBL; and a long wave-sensitive gene, HaLW) as well as the TRPL (transient receptor potential-like channel protein) gene, all integral to the host's visual perception pathway, were significantly upregulated after HearNPV infection. Knockout of HaBL, HaLW, or TRPL genes using the CRISPR/Cas9 system resulted in significantly reduced ERG responses, phototaxis, and climbing behaviour in HearNPV-infected larvae. These results reveal that HearNPV alters the expression of specific genes to hijack host visual perception at fundamental levels-photoreception and phototransduction-in order to induce climbing behaviour in host larvae.


Assuntos
Lepidópteros , Nucleopoliedrovírus , Animais , Baculoviridae , Larva/genética , Lepidópteros/fisiologia , Nucleopoliedrovírus/genética , Percepção Visual
15.
Pest Manag Sci ; 78(6): 2378-2389, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35289068

RESUMO

BACKGROUND: High temperatures will occur more frequently with global warming, with potential impacts on the efficacy of biological control agents. Heat shock proteins (HSPs) are induced by high temperature, but their possible roles in pest resistance to entomopathogens remain unexplored. We investigated the effects of high temperature (35 °C) on Helicoverpa armigera resistance to H. armigera nucleopolyhedrovirus (HearNPV) and the putative roles of HSPs in this process. RESULTS: Even short periods (24 h) of high temperature (35 °C) reduced mortality in HearNPV-infected H. armigera larvae. Sustained 35 °C exposure significantly shortened developmental time, and increased fresh weight and locomotor activity in infected larvae. Moreover, high temperature inhibited virus replication and thickened the epidermis of H. armigera, resulting in reduced spread of infection from cadavers. Real-time polymerase chain reaction (PCR) analysis showed that expression of 11 HSP genes was altered by the 35 °C treatment, and that mostly small heat shock protein (sHSP) genes were up-regulated, the same sHSPs were induced when larvae were infected with HearNPV. Finally, RNA interference (RNAi) suppression of these sHSPs showed that only Hsp24.91 and Hsp21.8 diminished H. armigera defensive responses to HearNPV infection. CONCLUSION: Even short periods of exposure to high temperature can significantly reduce susceptibility of H. armigera larvae to HearNPV by stimulating the production of sHSPs which enhance immune responses, with important implications for the use of entomopathogens as biological control agents under global warming scenarios. © 2022 Society of Chemical Industry.


Assuntos
Mariposas , Nucleopoliedrovírus , Animais , Agentes de Controle Biológico , Proteínas de Choque Térmico/genética , Larva , Mariposas/genética , Nucleopoliedrovírus/fisiologia , Temperatura
16.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614060

RESUMO

Cathepsin L protease, which belongs to the papain-like cysteine proteases family, is an important player in many physiological and pathological processes. However, little was known about the role of cathepsin L in ladybird beetles (Coccinella septempuctata Linnaeus) during diapause. Here, we analyzed the characteristics of cathepsin L (CsCatL) in the females of C. septempunctata and its role during the diapause of the ladybeetle. CsCatL was cloned and identified from beetle specimens by rapid amplification of cDNA-ends (RACE). The cDNA sequence of CsCatL was 971 bp in length, including an 843 bp open reading frame encoding a protein of 280 amino acids. It was identified as the cathepsin L group by phylogenetic analysis. Knockdown of CsCatL by RNA interference led to decreased expression levels of fatty acid synthase 2 (fas 2) genes and suppressed lipid accumulation. Furthermore, silencing the CsCatL gene distinctly reduced diapause-related features and the survival of female C. spetempunctata under diapause-inducing conditions. The results suggested that the CsCatL gene was involved in fatty acid biosynthesis and played a crucial role in the survival of adult C. septempunctata during the diapause preparation stage.


Assuntos
Besouros , Diapausa , Animais , Feminino , Catepsina L/genética , Catepsina L/metabolismo , Filogenia , DNA Complementar , Besouros/metabolismo , Diapausa/genética , Lipídeos
17.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769352

RESUMO

Arthropod Glutathione S-transferases (GSTs) constitute a large family of multifunctional enzymes that are mainly associated with xenobiotic or stress adaptation. GST-mediated xenobiotic adaptation takes place through direct metabolism or sequestration of xenobiotics, and/or indirectly by providing protection against oxidative stress induced by xenobiotic exposure. To date, the roles of GSTs in xenobiotic adaptation in the Colorado potato beetle (CPB), a notorious agricultural pest of plants within Solanaceae, have not been well studied. Here, we functionally expressed and characterized an unclassified-class GST, LdGSTu1. The three-dimensional structure of the LdGSTu1 was solved with a resolution up to 1.8 Å by X-ray crystallography. The signature motif VSDGPPSL was identified in the "G-site", and it contains the catalytically active residue Ser14. Recombinant LdGSTu1 was used to determine enzyme activity and kinetic parameters using 1-chloro-2, 4-dinitrobenzene (CDNB), GSH, p-nitrophenyl acetate (PNA) as substrates. The enzyme kinetic parameters and enzyme-substrate interaction studies demonstrated that LdGSTu1 could catalyze the conjugation of GSH to both CDNB and PNA, with a higher turnover number for CDNB than PNA. The LdGSTu1 enzyme inhibition assays demonstrated that the enzymatic conjugation of GSH to CDNB was inhibited by multiple pesticides, suggesting a potential function of LdGSTu1 in xenobiotic adaptation.


Assuntos
Adaptação Fisiológica , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Xenobióticos/farmacologia , Sequência de Aminoácidos , Animais , Catálise , Besouros , Cristalografia por Raios X , Glutationa Transferase/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Cinética , Estresse Oxidativo , Filogenia , Conformação Proteica , Homologia de Sequência
18.
Front Microbiol ; 12: 727200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539618

RESUMO

The current study was to investigate the effects of total dietary fiber (TDF) on growth performance, cecal structure, cecal microbial community, and short-chain fatty acids (SCFAs) profiles in the cecum of growing White Pekin ducks. A total of 108 male Pekin ducks of 14-days-old were randomly allocated and fed diets containing 12.4, 14.7, and 16.2% TDF for 35 days. Each dietary treatment consisted of six replicates with six birds each. The results showed that 14.7 and 16.2% TDF treatments promoted growth performance relative to 12.4% TDF treatments (P < 0.05). A total of 14.7 and 16.2% TDF treatments significantly elevated villus height, the ratio of villus height to crypt depth and muscle layer thickness of cecum, and lowered crypt depth compared with 12.4% TDF treatment (P < 0.05). Simultaneously, 14.7 and 16.2% TDF treatments up-regulated Claudin-1 mRNA expression of barrier genes in the cecum compared with 12.4% TDF (P < 0.05). Butyrate-producing bacteria like Oscillopiraceae affiliating to the phyla Firmicutes were observed as a biomarker in the 16.2% TDF. Higher concentration of butyrate in the cecum was obtained in the 14.7% TDF compared with 12.4 and 16.2% TDF (P < 0.05). The concentrations of isobutyrate, valerate, and isovalerate in the cecum were significantly increased in the 16.2% TDF compared with 12.4 and 14.7% TDF (P < 0.05). Meanwhile, the abundance of genus UCG-005 and Enterococcus was positive correlations with isobutyrate and valerate (P < 0.05). However, the concentration of propionate in the cecum significantly decreased in 14.7 and 16.2% TDF treatments relative to 12.4% TDF treatments (P < 0.05). In summary, increasing TDF levels improved growth performance, cecal histomorphology, and barrier function of meat ducks and it might be mediated by the changes of microbiota communities, especially bloom of SCFAs-producing bacteria, which facilitated the interaction between intestinal mucosa and microbiota.

19.
Artigo em Inglês | MEDLINE | ID: mdl-34273641

RESUMO

The oriental fruit moth Grapholita molesta is a cosmopolitan pest of orchard, which causes serious economic losses to the fruit production. Neuropeptides and their specific receptors (primarily G protein-coupled receptors, GPCRs) regulate multiple biological functions in insects and represent promising next-generation pest management strategy. Here, we generated a transcriptome of the central nervous system (CNS) of G. molesta. Overall, 57 neuropeptide precursor genes were identified and 128 various mature peptides were predicted from these precursors. Using peptidomic analysis of CNS of G. molesta, we identified total of 28 mature peptides and precursor-related peptides from 16 precursors. A total of 41 neuropeptide GPCR genes belonging to three classes were also identified. These GPCRs and their probable ligands were predicted. Additionally, expression patterns of these 98 genes in various larval tissues were evaluated using quantitative real-time PCR. Taken together, these results will benefit further investigations to determine physiological functions and pharmacological characterization of neuropeptides and their GPCRs in G. molesta; and to develop specific neuropeptide-based agents for this tortricid fruit pest control.


Assuntos
Mariposas , Neuropeptídeos , Animais , Sistema Nervoso Central , Frutas , Mariposas/genética , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/genética , Transcriptoma
20.
Pestic Biochem Physiol ; 176: 104881, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119223

RESUMO

Glutaredoxins (Grxs) and thioredoxin peroxidases (Tpxs) are major antioxidant enzyme families involved in regulating cellular redox homeostasis and in defense of enhanced oxidative stress through scavenging reactive oxygen species (ROS). However, the functions of these enzymes have not been reported in the oriental fruit moth, Grapholita molesta (Busck), a worldwide pest of stone and pome fruits. Here, we identified four new antioxidant genes, GmGrx, GmGrx3, GmGrx5, and GmTpx which were induced by exposure with emamectin benzoate, a commonly used biopesticide for G. molesta control. Other environmental factors (low and high temperatures, Escherichia coli and Metarhizium anisopliae) also significantly induced the expression of these genes. After GmGrx or GmTpx silenced by RNA interference (RNAi), the percentage of larval survival to emamectin benzoate were significantly decreased, demonstrating that GmGrx and GmTpx are involved in protecting G. molesta from stresses induced by emamectin benzoate. Furthermore, silenced GmGrx, GmGrx3, GmGrx5, or GmTpx significantly enhanced the enzymatic activities of superoxide dismutase (SOD) (except GmTpx) and peroxidase (POD), as well as the contents of hydrogen peroxide and metabolites ascorbate. Taken together, our results suggest that GmGrx, GmGrx3, GmGrx5, and GmTpx may play critical roles in antioxidant defense. Specially, GmGrx and GmTpx contribute to the defense of oxidative damage induced by exposure to emamectin benzoate through scavenging excessive ROS in G. molesta. Our findings provided a theoretical basis for understanding functions of insect glutaredoxin and peroxidase systems.


Assuntos
Glutarredoxinas , Mariposas , Animais , Glutarredoxinas/metabolismo , Ivermectina/análogos & derivados , Mariposas/genética , Mariposas/metabolismo , Estresse Oxidativo , Peroxirredoxinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...