Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(58): 35273-35286, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515672

RESUMO

Azide-bearing cell-derived extracellular matrices ("clickECMs") have emerged as a highly exciting new class of biomaterials. They conserve substantial characteristics of the natural extracellular matrix (ECM) and offer simultaneously small abiotic functional groups that enable bioorthogonal bioconjugation reactions. Despite their attractiveness, investigation of their biomolecular composition is very challenging due to the insoluble and highly complex nature of cell-derived matrices (CDMs). Yet, thorough qualitative and quantitative analysis of the overall material composition, organisation, localisation, and distribution of typical ECM-specific biomolecules is essential for consistent advancement of CDMs and the understanding of the prospective functions of the developed biomaterial. In this study, we evaluated frequently used methods for the analysis of complex CDMs. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and (immune)histochemical staining methods in combination with several microscopic techniques were found to be highly eligible. Commercially available colorimetric protein assays turned out to deliver inaccurate information on CDMs. In contrast, we determined the nitrogen content of CDMs by elementary analysis and converted it into total protein content using conversion factors which were calculated from matching amino acid compositions. The amount of insoluble collagens was assessed based on the hydroxyproline content. The Sircol™ assay was identified as a suitable method to quantify soluble collagens while the Blyscan™ assay was found to be well-suited for the quantification of sulphated glycosaminoglycans (sGAGs). Eventually, we propose a series of suitable methods to reliably characterise the biomolecular composition of fibroblast-derived clickECM.

2.
Langmuir ; 34(3): 1178-1189, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28976765

RESUMO

Polyelectrolyte multilayers (PEMs) are of great interest as cell culture surfaces because of their ability to modify topography and surface energy and release biologically relevant molecules such as growth factors. In this work, fibroblast growth factor 2 (FGF2) was adsorbed directly onto polystyrene, plasma-treated polystyrene, and glass surfaces with a poly(methacrylic acid) and poly-l-histidine PEM assembled above it. Up to 14 ng/cm2 of FGF2 could be released from plasma-treated polystyrene surfaces over the course of 7 days with an FGF2 solution concentration of 100 µg/mL applied during the adsorption process. This release rate could be modulated by adjusting the adsorption concentration, decreasing to as low as 2 ng/cm2 total release over 7 days using a 12.5 µg/mL FGF2 solution. The surface energy and roughness could also be regulated using the adsorbed PEM. These properties were found to be substrate- and first-layer-dependent, supporting current theories of PEM assembly. When released, FGF2 from the PEMs was found to significantly enhance fibroblast proliferation as compared to culture conditions without FGF2. The results showed that growth factor release profiles and surface properties are easily controllable through modification of the PEM assembly steps and that these strategies can be effectively applied to common cell culture surfaces to control the cell fate.


Assuntos
Técnicas de Cultura de Células/métodos , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Polieletrólitos/química , Adsorção , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Propriedades de Superfície
3.
J Biomed Mater Res A ; 105(2): 608-618, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27737520

RESUMO

Central nervous system (CNS) injuries and diseases result in neuronal damage and loss of function. Transplantation of neural stem cells (NSCs) has been shown to improve locomotor function after transplantation. However, due to the immune and inflammatory response at the injury site, the survival rate of the engrafted cells is low. Engrafted cell viability has been shown to increase when transplanted within a hydrogel. Hyaluronic acid (HA) hydrogels have natural anti-inflammatory properties and the backbone can be modified to introduce bioactive agents, such as anti-Fas, which we have previously shown to promote NSC survival while suppressing immune cell activity in bulk hydrogels in vitro. Although bulk HA hydrogels have shown to promote stem cell survival, microsphere gels for NSC encapsulation and delivery may have additional advantages. In this study, a flow-focusing microfluidic device was used to fabricate either vinyl sulfone-modified HA (VS-HA) or anti-Fas-conjugated HA (anti-Fas HA) microsphere gels encapsulated with NSCs. The majority of encapsulated NSCs remained viable for at least 24 h in the VS-HA and anti-Fas HA microsphere gels. Moreover, T-cells cultured in suspension with the anti-Fas HA microsphere gels had reduced viability after contact with the microsphere gels compared to the media control and soluble anti-Fas conditions. This approach can be adapted to encapsulate various cell types for therapeutic strategies in other physiological systems in order to increase survival by reducing the immune response. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 608-618, 2017.


Assuntos
Anticorpos/química , Ácido Hialurônico/química , Microesferas , Células-Tronco Neurais , Receptor fas , Células Cultivadas , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Géis , Humanos , Proteínas Imobilizadas/química , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Linfócitos T/citologia , Linfócitos T/metabolismo
4.
J Mater Chem B ; 4(16): 2803-2818, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263344

RESUMO

Millions of Americans suffer from nervous system injuries. Hydrogels have been investigated to (1) bridge nerve gaps; (2) act as scaffolds for bioactive molecule delivery or cell transplantation; and/or (3) promote axonal outgrowth. In this study, we use a rapid, one-step Michael addition click chemistry reaction to fabricate a hyaluronic acid (HA) scaffold for neural repair. Briefly, some of the primary hydroxyl groups on the HA backbone were modified with vinyl sulfone functional groups for (1) conjugation of thiol based bioactive molecules and (2) hydrogel crosslinking, which was confirmed by proton nuclear magnetic resonance (1H-NMR) and Fourier transform infrared spectroscopy (FTIR). The degree of crosslinking creates a mechanically tunable hydrogel. Rheology confirmed that the storage modulus was within the order of magnitude to that of nervous tissue. Primary human dermal fibroblasts and primary mouse neural stem cells (NSCs) seeded in the HA hydrogel were viable and proliferative, thus demonstrating that the HA hydrogel is suitable as a scaffold for cell transplantation. The range of pore size demonstrated that the scaffold supports cell migration and neurite extension. Neurite outgrowth of cultured whole embryonic day 9 chick dorsal root ganglions signifies that the hydrogel supports axonal outgrowth. Reduction in immune and inflammatory cell viability was observed in the anti-Fas conjugated HA hydrogel, whereas the NSCs maintained viability in the anti-Fas HA hydrogel. Therefore, this one-step, rapid, controllable reaction is an efficient method for fabrication of tunable, biomolecule conjugated hydrogels for neural engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...