Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 10(6)2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844277

RESUMO

The CRISPR/Cas9 system has been applied in the genome editing and disruption of latent infections for herpesviruses such as the herpes simplex virus, Epstein⁻Barr virus, cytomegalovirus, and Kaposi's sarcoma-associated herpesvirus. CRISPR/Cas9-directed mutagenesis can introduce similar types of mutations to the viral genome as can bacterial artificial chromosome recombination engineering, which maintains and reconstitutes the viral genome successfully. The cleavage mediated by CRISPR/Cas9 enables the manipulation of disease-associated viral strains with unprecedented efficiency and precision. Additionally, current therapies for herpesvirus productive and latent infections are limited in efficacy and cannot eradicate viruses. CRISPR/Cas9 is potentially adapted for antiviral treatment by specifically targeting viral genomes during latent infections. This review, which focuses on recently published progress, suggests that the CRISPR/Cas9 system is not only a useful tool for basic virology research, but also a promising strategy for the control and prevention of herpesvirus latent infections.


Assuntos
Sistemas CRISPR-Cas , Genoma Viral , Infecções por Herpesviridae/terapia , Herpesviridae/genética , Animais , Citomegalovirus/genética , Edição de Genes , Infecções por Herpesviridae/prevenção & controle , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Camundongos , Mutagênese , Simplexvirus/genética , Latência Viral
2.
Nat Microbiol ; 3(4): 503-513, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29588542

RESUMO

The precise cell type hosting latent human cytomegalovirus (HCMV) remains elusive. Here, we report that HCMV reprogrammes human haematopoietic progenitor cells (HPCs) into a unique monocyte subset to achieve latency. Unlike conventional monocytes, this monocyte subset possesses higher levels of B7-H4, IL-10 and inducible nitric oxide synthase (iNOS), a longer lifespan and strong immunosuppressive capacity. Cell sorting of peripheral blood from latently infected human donors confirms that only this monocyte subset, representing less than 0.1% of peripheral mononuclear cells, is HCMV genome-positive but immediate-early-negative. Mechanistic studies demonstrate that HCMV promotes the differentiation of HPCs into this monocyte subset by activating cellular signal transducer and activator of transcription 3 (STAT3). In turn, this monocyte subset generates a high level of nitric oxide (NO) to silence HCMV immediate-early transcription and promote viral latency. By contrast, the US28-knockout HCMV mutant, which is incapable of activating STAT3, fails to reprogramme the HPCs and achieve latency. Our findings reveal that via activating the STAT3-iNOS-NO axis, HCMV differentiates human HPCs into a longevous, immunosuppressive monocyte subset for viral latency.


Assuntos
Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno/imunologia , Tolerância Imunológica/genética , Monócitos/virologia , Latência Viral/imunologia , Diferenciação Celular/fisiologia , Reprogramação Celular/genética , Citomegalovirus/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Tolerância Imunológica/imunologia , Interleucina-10/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Transcrição STAT3/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Latência Viral/genética
3.
PLoS Pathog ; 14(1): e1006867, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377960

RESUMO

Interferon-γ (IFN-γ) represents one of the most important innate immunity responses in a host to combat infections of many human viruses including human herpesviruses. Human N-myc interactor (Nmi) protein, which has been shown to interact with signal transducer and activator of transcription (STAT) proteins including STAT1, is important for the activation of IFN-γ induced STAT1-dependent transcription of many genes responsible for IFN-γ immune responses. However, no proteins encoded by herpesviruses have been reported to interact with Nmi and inhibit Nmi-mediated activation of IFN-γ immune responses to achieve immune evasion from IFN-γ responses. In this study, we show strong evidence that the UL23 protein of human cytomegalovirus (HCMV), a human herpesvirus, specifically interacts with Nmi. This interaction was identified through a yeast two-hybrid screen and co-immunoprecipitation in human cells. We observed that Nmi, when bound to UL23, was not associated with STAT1, suggesting that UL23 binding of Nmi disrupts the interaction of Nmi with STAT1. In cells overexpressing UL23, we observed (a) significantly reduced levels of Nmi and STAT1 in the nuclei, the sites where these proteins act to induce transcription of IFN-γ stimulated genes, and (b) decreased levels of the induction of the transcription of IFN-γ stimulated genes. UL23-deficient HCMV mutants induced higher transcription of IFN-γ stimulated genes and exhibited lower titers than parental and control revertant viruses expressing functional UL23 in IFN-γ treated cells. Thus, UL23 appears to interact directly with Nmi and inhibit nuclear translocation of Nmi and its associated protein STAT1, leading to a decrease of IFN-γ induced responses and an increase of viral resistance to IFN-γ. Our results further highlight the roles of UL23-Nmi interactions in facilitating viral immune escape from IFN-γ responses and enhancing viral resistance to IFN antiviral effects.


Assuntos
Citomegalovirus/fisiologia , Evasão da Resposta Imune , Imunidade Inata/efeitos dos fármacos , Interferon gama/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas da Matriz Viral/fisiologia , Células Cultivadas , Citomegalovirus/imunologia , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Evasão da Resposta Imune/genética , Imunidade Inata/genética , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/imunologia
4.
Mol Ther Nucleic Acids ; 9: 322-332, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246310

RESUMO

External guide sequence (EGS) RNAs are associated with ribonuclease P (RNase P), a tRNA processing enzyme, and represent promising agents for gene-targeting applications as they can direct RNase-P-mediated cleavage of a target mRNA. Using murine cytomegalovirus (MCMV) as a model system, we examined the antiviral effects of an EGS variant, which was engineered using in vitro selection procedures. EGSs were used to target the shared mRNA region of MCMV capsid scaffolding protein (mCSP) and assemblin. In vitro, the EGS variant was 60 times more active in directing RNase P cleavage of the target mRNA than the EGS originating from a natural tRNA. In MCMV-infected cells, the variant reduced mCSP expression by 92% and inhibited viral growth by 8,000-fold. In MCMV-infected mice hydrodynamically transfected with EGS-expressing constructs, the EGS variant was more effective in reducing mCSP expression, decreasing viral production, and enhancing animal survival than the EGS originating from a natural tRNA. These results provide direct evidence that engineered EGS variants with higher targeting activity in vitro are also more effective in reducing gene expression in animals. Furthermore, our findings imply the possibility of engineering potent EGS variants for therapy of viral infections.

5.
PLoS One ; 12(10): e0186791, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29059242

RESUMO

We have previously engineered new RNase P-based ribozyme variants with improved in vitro catalytic activity. In this study, we employed a novel engineered variant to target a shared mRNA region of human cytomegalovirus (HCMV) immediate early proteins 1 (IE1) and 2 (IE2), which are essential for the expression of viral early and late genes as well as viral growth. Ribozyme F-R228-IE represents a novel variant that possesses three unique base substitution point mutations at the catalytic domain of RNase P catalytic RNA. Compared to F-M1-IE that is the ribozyme derived from the wild type RNase P catalytic RNA sequence, the functional variant F-R228-IE cleaved the target mRNA sequence in vitro at least 100 times more efficiently. In cultured cells, expression of F-R228-IE resulted in IE1/IE2 expression reduction by 98-99% and in HCMV production reduction by 50,000 folds. In contrast, expression of F-M1-IE resulted in IE1/IE2 expression reduction by less than 80% and in viral production reduction by 200 folds. Studies of the ribozyme-mediated antiviral effects in cultured cells suggest that overall viral early and late gene expression and viral growth were inhibited due to the ribozyme-mediated reduction of HCMV IE1 and IE2 expression. Our results provide direct evidence that engineered RNase P ribozymes, such as F-R228-IE, can serve as a novel class of inhibitors for the treatment and prevention of HCMV infection. Moreover, these results suggest that F-R228-IE, with novel and unique mutations at the catalytic domain to enhance ribozyme activity, can be a candidate for the construction of effective agents for anti-HCMV therapy.


Assuntos
Citomegalovirus/genética , Genes Precoces , RNA Catalítico/metabolismo , Ribonuclease P/metabolismo , Citomegalovirus/crescimento & desenvolvimento , Humanos
6.
Viruses ; 7(7): 3345-60, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26114473

RESUMO

An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%-99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.


Assuntos
Proteínas do Capsídeo/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , RNA Catalítico/metabolismo , Ribonuclease P/metabolismo , Replicação Viral , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/genética , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/terapia , Regulação Viral da Expressão Gênica , Humanos , RNA Catalítico/genética , Ribonuclease P/genética
7.
PLoS One ; 10(6): e0129276, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083421

RESUMO

Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA) and neuraminidase (NA) of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas contra Salmonella/uso terapêutico , Proteínas Virais/imunologia , Administração Oral , Animais , Feminino , Técnicas de Transferência de Genes , Hemaglutininas/genética , Hemaglutininas/imunologia , Imunidade Celular , Imunidade Humoral , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/genética , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/imunologia , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/genética , Vacinas contra Salmonella/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...