Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 1): 133334, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908626

RESUMO

Tannic acid, a bioactive polyphenol found in various phytogenic foods and medicinal plants, has potential prevention effects on colitis, though more evidence and mechanistic studies are required to substantiate this. In this study, we investigated the effects of different doses from 0 to 3 mg/mL of tannic acid on mice, ultimately selecting a dose of 3 mg/mL for the anti-colitis trial based on growth and intestinal morphology assessments. Using the DSS-induced colitis model, we found that tannic acid may alleviate colitis by inhibiting the IL-17 - NF-κB p65 signaling pathway and modulating epigenetic pathways, particularly methylation modifications. Additionally, tannic acid altered the gut microbiota, increasing the abundances of Prevotella, Eubacterium_siraeum_group, and Enterorhabdus in the colon. Supplementation with Eubacterium siraeum via gavage also inhibited colitis, accompanied by increased folate and methylation regulators in the colon. These findings suggest that tannic acid may inhibit colitis through the suppression of the IL-17 - NF-κB pathway and the enhancement of microbiota-mediated methylation pathways.

2.
Front Genet ; 12: 769690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745232

RESUMO

Brown adipose tissue (BAT) is specialized for energy expenditure, thus a better understanding of the regulators influencing BAT development could provide novel strategies to defense obesity. Many protein-coding genes, miRNAs, and lncRNAs have been investigated in BAT development, however, the expression patterns and functions of circRNA in brown adipogenesis have not been reported yet. This study determined the circRNA expression profiles across brown adipogenesis (proliferation, early differentiated, and fully differentiated stages) by RNA-seq. We identified 3,869 circRNAs and 36.9% of them were novel. We found the biogenesis of circRNA was significantly related to linear mRNA transcription, meanwhile, almost 70% of circRNAs were generated by alternative back-splicing. Next, we examined the cell-specific and differentiation stage-specific expression of circRNAs. Compared to white adipocytes, nearly 30% of them were specifically expressed in brown adipocytes. Further, time-series expression analysis showed circRNAs were dynamically expressed, and 117 differential expression circRNAs (DECs) in brown adipogenesis were identified, with 77 upregulated and 40 downregulated. Experimental validation showed the identified circRNAs could be successfully amplified and the expression levels detected by RNA-seq were reliable. For the potential functions of the circRNAs, GO analysis suggested that the decreased circRNAs were enriched in cell proliferation terms, while the increased circRNAs were enriched in development and thermogenic terms. Bioinformatics predictions showed that DECs contained numerous binding sites of functional miRNAs. More interestingly, most of the circRNAs contained multiple binding sites for the same miRNA, indicating that they may facilitate functions by acting as microRNA sponges. Collectively, we characterized the circRNA expression profiles during brown adipogenesis and provide numerous novel circRNAs candidates for future brown adipogenesis regulating studies.

3.
Front Physiol ; 12: 728208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489740

RESUMO

Obesity and its related metabolic diseases have become great public health threats worldwide. Although accumulated evidence suggests that circRNA is a new type of non-coding RNAs regulating various physiological and pathological processes, little attention has been paid to the expression profiles and functions of circRNAs in white adipose tissue. In this study, 3,771 circRNAs were detected in three stages of white adipogenesis (preadipocyte, differentiating preadipocyte, and mature adipocyte) by RNA-seq. Experimental validation suggested that the RNA-seq results are highly reliable. We found that nearly 10% of genes which expressed linear RNAs in adipocytes could also generate circRNAs. In addition, 40% of them produced multiple circRNA isoforms. We performed correlation analysis and found that a great deal of circRNAs (nearly 50%) and their parental genes were highly correlated in expression levels. A total of 41 differential expression circRNAs (DECs) were detected during adipogenesis and an extremely high ratio of them (80%) were correlated with their parental genes, indicating these circRNAs may potentially play roles in regulating the expression of their parental genes. KEGG enrichment and GO annotation of the parental genes suggesting that the DECs may participate in several adipogenesis-related pathways. Following rigorous selection, we found that many up-regulated circRNAs contain multiple miRNAs binding sites, such as miR17, miR-30c, and miR-130, indicating they may potentially facilitate their regulatory functions by acting as miRNA sponges. These results suggest that plenty of circRNAs are expressed in white adipogenesis and the DECs may serve as new candidates for future adipogenesis regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...