Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 169: 107867, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141451

RESUMO

As the pace of research on nanomedicine for musculoskeletal (MSK) diseases accelerates, there remains a lack of comprehensive analysis regarding the development trajectory, primary authors, and research focal points in this domain. Additionally, there's a need of detailed elucidation of potential research hotspots. The study gathered articles and reviews focusing on the utilization of nanoparticles (NPs) for MSK diseases published between 2013 and 2023, extracted from the Web of Science database. Bibliometric and visualization analyses were conducted using various tools such as VOSviewer, CiteSpace, Pajek, Scimago Graphica, and the R package. China, the USA, and India emerged as the key drivers in this research domain. Among the numerous institutions involved, Shanghai Jiao Tong University, Chinese Academy of Sciences, and Sichuan University exhibited the highest productivity levels. Vallet-Regi Maria emerged as the most prolific author in this field. International Journal of Nanomedicine accounted for the largest number of publications in this area. The top five disorders of utmost significance in this field include osteosarcoma, cartilage diseases, bone fractures, bone neoplasms, and joint diseases. These findings are instrumental in providing researchers with a comprehensive understanding of this domain and offer valuable perspectives for future investigations.


Assuntos
Doenças Musculoesqueléticas , Nanopartículas , Humanos , Bibliometria
2.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685944

RESUMO

Osteoarthritis (OA) represents the foremost degenerative joint disease observed in a clinical context. The escalating issue of population aging significantly exacerbates the prevalence of OA, thereby imposing an immense annual economic burden on societies worldwide. The current therapeutic landscape falls short in offering reliable pharmaceutical interventions and efficient treatment methodologies to tackle this growing problem. However, the scientific community continues to dedicate significant efforts towards advancing OA treatment research. Contemporary studies have discovered that the progression of OA may be slowed through the strategic influence on peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated receptors within the nuclear hormone receptor family. The three distinctive subtypes-PPARα, PPARß/δ, and PPARγ-find expression across a broad range of cellular terminals, thus managing a multitude of intracellular metabolic operations. The activation of PPARγ and PPARα has been shown to efficaciously modulate the NF-κB signaling pathway, AP-1, and other oxidative stress-responsive signaling conduits, leading to the inhibition of inflammatory responses. Furthermore, the activation of PPARγ and PPARα may confer protection to chondrocytes by exerting control over its autophagic behavior. In summation, both PPARγ and PPARα have emerged as promising potential targets for the development of effective OA treatments.


Assuntos
Osteoartrite , PPAR delta , PPAR beta , Humanos , PPAR gama/genética , PPAR alfa , Osteoartrite/tratamento farmacológico
3.
Front Bioeng Biotechnol ; 11: 1199939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251563

RESUMO

Background: The repair of wounds usually caused by trauma or other chronic diseases remained challenging in clinics due to the potential risk of inflammation and inadequate tissue regenerative properties. Among them, the behaviour of immune cells, such as macrophages, is critical in tissue repair. Materials and methods: In this study, a water-soluble phosphocreatine-grafted methacryloyl chitosan (CSMP) was synthesized with a one-step lyophilization method, followed by the fabrication of CSMP hydrogel with a photocrosslinked method. The microstructure, water absorption and mechanical properties for the hydrogels were investigated. Then, the macrophages were co-cultured with hydrogels and the pro-inflammatory factors and polarization markers for these macrophages were detected through real-time quantitative polymerase chain reaction (RT-qPCR), Western blot (WB), and flow cytometry methods. Finally, the CSMP hydrogel was implanted in a wound defect area in mice to test its ability to promote wound healing. Results: The lyophilized CSMP hydrogel had a porous structure with pores ranging in size from 200 to 400 µm, which was larger than the CSM hydrogel's. The lyophilized CSMP hydrogel possessed a higher water absorption rate compared with the CSM hydrogel. The compressive stress and modulus of these hydrogels were increased in the initial 7 days immersion and then gradually decreased during the in vitro immersion in PBS solution up to 21 days; the CSMP hydrogel showed a higher value in these parameters versus the CSM hydrogel. The CSMP hydrogel inhibited the expression of inflammatory factors such as interleukin-1ß (IL-1ß), IL-6, IL-12, and tumor necrosis factor-α (TNF-α) in an in vitro study cocultured with pro-inflammatory factors in pre-treated bone marrow-derived macrophages (BMM). The mRNA sequencing results showed that the CSMP hydrogel might inhibit the macrophages' M1 type polarization through the NF-κB signaling pathway. Furthermore, when compared to the control group, the CSMP hydrogel promoted more skin area repair in the mouse wound defect area, and inflammatory factors such as IL-1ß, IL-6, and TNF-α were lower in the repaired tissue for the CSMP group. Conclusion: This phosphate-grafted chitosan hydrogel showed great promise for wound healing through regulating the macrophage's phenotype via the NF-κB signaling pathway.

4.
Front Genet ; 14: 1094793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891150

RESUMO

Background: Copper is an indispensable mineral element involved in many physiological metabolic processes. Cuproptosis is associated with a variety of cancer such as hepatocellular carcinoma (HCC). The objective of this study was to examine the relationships between the expression of cuproptosis-related genes (CRGs) and tumor characteristics, including prognosis and microenvironment of HCC. Methods: The differentially expressed genes (DEGs) between high and low CRGs expression groups in HCC samples were identified, and further were analyzed for functional enrichment analysis. Then, CRGs signature of HCC was constructed and analyzed utilizing LASSO and univariate and multivariate Cox regression analysis. Prognostic values of CRGs signature were evaluated by Kaplan-Meier analysis, independent prognostic analysis and nomograph. The expression of prognostic CRGs was verified by Real-time quantitative PCR (RT-qPCR) in HCC cell lines. In addition, the relationships between prognostic CRGs expression and the immune infiltration, tumor microenvironment, antitumor drugs response and m6A modifications were further explored using a series of algorithms in HCC. Finally, ceRNA regulatory network based on prognostic CRGs was constructed. Results: The DEGs between high and low CRG expression groups in HCC were mainly enriched in focal adhesion and extracellular matrix organization. Besides, we constructed a prognostic model that consists of CDKN2A, DLAT, DLST, GLS, and PDHA1 CRGs for predicting the survival likelihood of HCC patients. And the elevated expression of these five prognostic CRGs was substantially in HCC cell lines and associated with poor prognosis. Moreover, immune score and m6A gene expression were higher in the high CRG expression group of HCC patients. Furthermore, prognostic CRGs have higher mutation rates in HCC, and are significantly correlated with immune cell infiltration, tumor mutational burden, microsatellite instability, and anti-tumor drug sensitivity. Then, eight lncRNA-miRNA-mRNA regulatory axes that affected the progression of HCC were predicted. Conclusion: This study demonstrated that the CRGs signature could effectively evaluate prognosis, tumor immune microenvironment, immunotherapy response and predict lncRNA-miRNA-mRNA regulatory axes in HCC. These findings extend our knowledge of cuproptosis in HCC and may inform novel therapeutic strategies for HCC.

5.
Front Genet ; 14: 1101683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816047

RESUMO

Background: Increasing evidence indicates a crucial role for N7-methylguanosine (m7G) methylation modification in human disease development, particularly cancer, and aberrant m7G levels are closely associated with tumorigenesis and progression via regulation of the expression of multiple oncogenes and tumor suppressor genes. However, the role of m7G in sarcomas (SARC) has not been adequately evaluated. Materials and methods: Transcriptome and clinical data were gathered from the TCGA database for this study. Normal and SARC groups were compared for the expression of m7G-related genes (m7GRGs). The expression of m7GRGs was verified using real-time quantitative PCR (RT-qPCR) in SARC cell lines. Then, differentially expressed genes (DEGs) were identified between high and low m7GRGs expression groups in SARC samples, and GO enrichment and KEGG pathways were evaluated. Next, prognostic values of m7GRGs were evaluated by Cox regression analysis. Subsequently, a prognostic model was constructed using m7GRGs with good prognostic values by Lasso regression analysis. Besides, the relationships between prognostic m7GRGs and immune infiltration, clinical features, cuproptosis-related genes, and antitumor drugs were investigated in patients with SARC. Finally, a ceRNA regulatory network based on m7GRGs was constructed. Results: The expression of ten m7GRGs was higher in the SARC group than in the control group. DEGs across groups with high and low m7GRGs expression were enriched for adhesion sites and cGMP-PKG. Besides, we constructed a prognostic model that consists of EIF4A1, EIF4G3, NCBP1, and WDR4 m7GRGs for predicting the survival likelihood of sarcoma patients. And the elevated expression of these four prognostic m7GRGs was substantially associated with poor prognosis and elevated expression in SARC cell lines. Moreover, we discovered that these four m7GRGs expressions were negatively correlated with CD4+ T cell levels, dendritic cell level and tumor purity, and positively correlated with tumor mutational burden, microsatellite instability, drug sensitivity and cuproptosis-related genes in patients with sarcomas. Then, a triple regulatory network of mRNA, miRNA, and lncRNA was established. Conclusion: The current study identified EIF4A1, EIF4G3, NCBP1, and WDR4 as prognostic genes for SARC that are associated with m7G.These findings extend our knowledge of m7G methylation in SARC and may guide the development of innovative treatment options.

6.
ACS Appl Mater Interfaces ; 14(6): 7592-7608, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119809

RESUMO

Natural polysaccharide (NPH)-based injectable hydrogels have shown great potential for critical-sized bone defect repair. However, their osteogenic, angiogenic, and mechanical properties are insufficient. Here, MgO nanoparticles (NPs) were incorporated into a newly synthesized water-soluble phosphocreatine-functionalized chitosan (CSMP) water solution to form an injectable hydrogel (CSMP-MgO) via supramolecular combination between phosphate groups in CSMP and magnesium in MgO NPs to circumvent these drawbacks of chitosan-based injectable hydrogels. Water-soluble chitosan deviate CSMP was first synthesized by grafting methacrylic anhydride and phosphocreatine into a chitosan chain in a one-step lyophilization process. The phosphocreatine in this hydrogel not only provides sites to combine with MgO NPs to form supramolecular binding but also serves as the reservoir to control Mg2+ release. As a result, the lyophilized CSMP-MgO hydrogels presented a porous structure with some small holes in the pore wall, and the pore diameters ranged from 50 to 100 µm. The CSMP-MgO injectable hydrogels were restricted from swelling in DI water (lowest swelling ratio was 16.0 ± 1.1 g/g) and presented no brittle failure during compression even at a strain above 85% (maximum compressive strength was 195.0 kPa) versus the control groups (28.0 and 41.3 kPa for CSMP and CSMP-MgO (0.5) hydrogels), with regulated Mg2+ release in a stable and sustained manner. The CSMP-MgO injectable hydrogels promoted in vitro calcium phosphate (hydroxyapatite (HA) and tetracalcium phosphate (TTCP)) deposition in supersaturated calcium phosphate solution and presented no cytotoxicity to MC3T3-E1 cells; the CSMP-MgO hydrogel promoted MC3T3-E1 cell osteogenic differentiation with upregulation of BSP, OPN, and Osterix osteogenic gene expression and mineralization and HUVEC tube formation. Among them, CSMP-MgO (5) presented most of these properties. Moreover, this hydrogel (CSMP-MgO (5)) showed an excellent ability to promote new bone formation in critical-sized calvarial defects in rats. Thus, the CSMP-MgO injectable hydrogel shows great promise for bone regeneration.


Assuntos
Quitosana , Nanopartículas , Animais , Regeneração Óssea , Quitosana/química , Quitosana/farmacologia , Durapatita/química , Hidrogéis/química , Hidrogéis/farmacologia , Óxido de Magnésio/farmacologia , Nanopartículas/química , Osteogênese , Óxidos , Ratos
7.
DNA Cell Biol ; 39(1): 78-91, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31765229

RESUMO

microRNA plays an important role in the development of tumors, including osteosarcoma. However, the role of miR-1225-5p in osteosarcoma is currently unclear. First, we found that miR-1225-5p was downregulated in osteosarcoma cells relative to its levels in normal bone tissue by analyzing GSE28423 data in the GEO database. Using GSE39040, we found that low miR-1225-5p expression is associated with poor prognosis in patients with osteosarcoma, and we also found low miR-1225-5p expression in patients with recurrent osteosarcoma. We later demonstrated that osteosarcoma cell lines transfected with miR-1225-5p mimic had decreased ability to proliferate, migrate, and invade relative to control cells. To elucidate the mechanism by which miR-1225-5p inhibits the development of osteosarcoma, we identified Sox9 as a target gene of miR-1225-5p using the TargetScan website. We confirmed that Sox9 is the target gene of miR-1225-5p using the luciferase reporter assay. We then found that Sox9 is highly expressed in osteosarcoma by analyzing the GSE16088 and GSE42352 datasets and that high expression of Sox9 is associated with poor prognosis in patients with osteosarcoma using the R2 database. Further analysis using the TARGET database uncovered that high Sox9 expression is associated with a high recurrence rate in patients with osteosarcoma. Transfection of Sox9 siRNA inhibited the proliferation, migration, and invasiveness of osteosarcoma cells. We transfected miR-1225-5p together with Sox9 siRNA into osteosarcoma cells, observing strong inhibition of proliferation, migration, and invasiveness. Finally, exogenous expression of Sox9 partially reversed the anticancer effects of miR-1225-5p in osteosarcoma cells. Taken together, our findings suggest that miR-1225-5p functions as a tumor suppressor in osteosarcoma by targeting Sox9, thereby revealing new therapeutic targets for osteosarcoma.


Assuntos
Neoplasias Ósseas/genética , Genes Supressores de Tumor , MicroRNAs/genética , Osteossarcoma/genética , Fatores de Transcrição SOX9/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Criança , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Recidiva Local de Neoplasia/genética , Osteossarcoma/patologia , Prognóstico , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...