Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35591386

RESUMO

This paper investigated the influence of deep cryogenic treatments (DCT) on the tensile strength, elongation to fracture and conductivity of a deformation-processed Cu-Ni-Co-Si alloy. The tensile properties were measured using a mechanical testing machine. The conductivity was evaluated using a low-resistance tester. The microstructure and precipitated phases were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), an energy dispersive spectrometer (EDS) and an X-ray diffractometer (XRD). The tensile strength, elongation to fracture and conductivity of the Cu-1.34Ni-1.02Co-0.61Si alloy before and after cold rolling at 47% reduction increased with increasing DCT time and tended to be stable at about 36 h. The microstructure became more uniform after the DCT. The grain size was refined and was smallest after DCT for 48 h. The DCT promoted the precipitation of the solid solution elements Ni, Co and Si from the Cu matrix to form many fine and evenly distributed 20-70 nm spherical second-phase particles in the grains and grain boundaries.

2.
Materials (Basel) ; 13(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781610

RESUMO

The tensile strength evolution and strengthening mechanism of Cu-Fe in-situ composites were investigated using both experiments and theoretical analysis. Experimentally, the tensile strength evolution of the in-situ composites with a cold deformation strain was studied using the model alloys Cu-11Fe, Cu-14Fe, and Cu-17Fe, and the effect of the strain on the matrix of the in-situ composites was studied using the model alloys Cu-3Fe and Cu-4.3Fe. The tensile strength was related to the microstructure and to the theoretical strengthening mechanisms. Based on these experimental data and theoretical insights, a mathematical model was established for the dependence of the tensile strength on the cold deformation strain. For low cold deformation strains, the strengthening mechanism was mainly work hardening, solid solution, and precipitation strengthening. Tensile strength can be estimated using an improved rule of mixtures. For high cold deformation strains, the strengthening mechanism was mainly filament strengthening. Tensile strength can be estimated using an improved Hall-Petch relation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...