Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 140: 111788, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34062414

RESUMO

Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by inflammation and debilitating pain. CRPS patients with pain refractory to more conventional analgesics can be treated with subanesthetic doses of ketamine. Our previous studies found that poor responders to ketamine had a 22-fold downregulation of the miRNA hsa-miR-605 in blood prior to ketamine treatment. Hence, we sought to investigate the functional significance of miR-605 downregulation and its impact on target gene expression, as investigating target mRNAs of differentially expressed miRNAs can provide important insights on aberrant gene expression that may contribute to disease etiology. Using a bioinformatics prediction, we identified that miR-605 can target the proinflammatory chemokine CXCL5, which plays a role in leukocyte recruitment and activation. We hypothesized that downregulation of miR-605 in poor responders to ketamine could increase CXCL5 expression and thereby contribute to inflammation in these patients. We confirmed that miR-605 regulates CXCL5 by using a miRNA mimic and inhibitor in human primary endothelial cells. Inhibition of miR-605 increased CXCL5 secretion and migration of human monocytic cells, thereby demonstrating a functional impact of miR-605 on chemotaxis. Additionally, CXCL5 mRNA was upregulated in whole blood from poor responders to ketamine, and CXCL5 protein was increased in plasma from CRPS patients. Thus, our studies suggest that miR-605 regulation of CXCL5 can regulate inflammation.


Assuntos
Quimiocina CXCL5/imunologia , Síndromes da Dor Regional Complexa/imunologia , MicroRNAs/imunologia , Analgésicos/uso terapêutico , Movimento Celular , Quimiocina CXCL5/sangue , Quimiocina CXCL5/genética , Síndromes da Dor Regional Complexa/sangue , Síndromes da Dor Regional Complexa/tratamento farmacológico , Síndromes da Dor Regional Complexa/genética , Regulação para Baixo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Ketamina/uso terapêutico , MicroRNAs/metabolismo , Monócitos/imunologia , Monócitos/fisiologia , Células THP-1 , Fator de Necrose Tumoral alfa/farmacologia
2.
Cell Mol Life Sci ; 78(1): 299-316, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32193609

RESUMO

Biological sex influences inflammatory response, as there is a greater incidence of acute inflammation in men and chronic inflammation in women. Here, we report that acute inflammation is attenuated by X-inactive specific transcript (Xist), a female cell-specific nuclear long noncoding RNA crucial for X-chromosome inactivation. Lipopolysaccharide-mediated acute inflammation increased Xist levels in the cytoplasm of female mouse J774A.1 macrophages and human AML193 monocytes. In both cell types, cytoplasmic Xist colocalizes with the p65 subunit of NF-κB. This interaction was associated with reduced NF-κB nuclear migration, suggesting a novel mechanism to suppress acute inflammation. Further supporting this hypothesis, expression of 5' XIST in male cells significantly reduced IL-6 and NF-κB activity. Adoptive transfer of male splenocytes expressing Xist reduced acute paw swelling in male mice indicating that Xist can have a protective anti-inflammatory effect. These findings show that XIST has functions beyond X chromosome inactivation and suggest that XIST can contribute to sex-specific differences underlying inflammatory response by attenuating acute inflammation in women.


Assuntos
Inflamação/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Células Cultivadas , Citoplasma/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , Inflamação/prevenção & controle , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Fatores Sexuais , Fator de Transcrição RelA/metabolismo
4.
Indian J Otolaryngol Head Neck Surg ; 71(Suppl 2): 1508-1510, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31750207

RESUMO

Varicella-zoster virus (VZV) reactivation can cause meningoencephalitis. Ramsay Hunt syndrome is the reactivation of VZV in facial nerve, consisting of ear pain, facial nerve paralysis, and auricular rash. We present a case of VZV meningoencephalitis presented with Ramsay Hunt syndrome. Early clinical suspicion was beneficial in starting aggressive treatment.

5.
A A Pract ; 13(10): 386-388, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31609723

RESUMO

Complex regional pain syndrome (CRPS) is a severely disabling condition that typically develops after an inciting traumatic event. Ketamine infusion in subanesthetic dose provides sustained analgesia in selected cases of CRPS. In general, ketamine treatment does not significantly affect electrolyte or water balance. Here, we report a case of a CRPS patient on intrathecal baclofen pump developing syndrome of inappropriate antidiuretic hormone release (SIADH) during ketamine infusion. Prophylactic treatment with intravenous loop diuretics was successful in preventing the development of SIADH during ketamine infusion during subsequent infusions in this case.


Assuntos
Baclofeno/administração & dosagem , Síndromes da Dor Regional Complexa/tratamento farmacológico , Síndrome de Secreção Inadequada de HAD/induzido quimicamente , Ketamina/administração & dosagem , Baclofeno/efeitos adversos , Feminino , Humanos , Síndrome de Secreção Inadequada de HAD/tratamento farmacológico , Injeções Intraventriculares , Injeções Espinhais , Ketamina/efeitos adversos , Pessoa de Meia-Idade , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico , Resultado do Tratamento
6.
J Extracell Vesicles ; 8(1): 1650595, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31489147

RESUMO

Extracellular RNA in circulation mediates intercellular communication in normal and pathological processes. One mode of circulating miRNA transport in bodily fluids is within 30-150 nm small extracellular vesicles (sEVs) or exosomes. Uptake of sEVs can regulate gene expression in recipient cells enabling circulating miRNAs to exert paracrine and systemic effects. Complex regional pain syndrome (CRPS) is a debilitating pain disorder characterized by chronic inflammation. Our previous investigations identified a significant decrease of hsa-miR-939 in whole blood from CRPS patients compared to control; we also observed that overexpression of miR-939 can negatively regulate several proinflammatory genes in vitro. Though downregulated in whole blood, miR-939 was significantly upregulated in sEVs isolated from patient serum. Here we investigated miR-939 packaging into sEVs in vitro under inflammation induced by monocyte chemoattractant protein-1 (MCP-1), a chemokine that is upregulated in CRPS patients. Stimulation of THP-1 monocytes by MCP-1 led to elevated levels of miR-939 in sEVs, which was abrogated using inhibitors of exosome secretion. miRNAs loaded into exosomes largely contain short miRNA sequence motifs called EXOmotifs. Mutation analysis of miR-939 showed that EXOmotif is one of the possible cellular mechanisms responsible for packaging miR-939 into sEVs. We confirmed gene expression changes in recipient cells following the uptake of sEVs enriched in miR-939 using RNA sequencing. Additionally, our data from primary immune cell-derived sEVs of CRPS patients and controls demonstrate that while the relative expression of miR-939 is higher in sEVs derived from B cells, T cells and NK cells relative to monocyte-derived sEVs in controls, only the B cell-derived sEVs showed a significantly higher level of miR-939 in CRPS patients. Differential miRNA sorting into exosomes and its functional impact on recipient cells may contribute to the underlying pathophysiology of CRPS.

7.
Clin J Gastroenterol ; 12(5): 387-397, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30980261

RESUMO

Liver cirrhosis is associated with multiple vascular syndromes affecting almost all body systems. Many of these syndromes are directly related to impaired liver function and sometimes reversible after liver transplantation while others arise secondary to portal hypertension and ascites. Altered expression of angiogenic and vasoactive compounds (most importantly nitric oxide), endothelial dysfunction, dysregulated neurohormonal control, and systemic inflammatory state play differential roles in mediating homeostatic instability and abnormal vasogenic response. Important vascular features encountered in liver disease include portal hypertension, splanchnic overflow, abnormal angiogenesis and shunts, portopulmonary syndrome, hepatopulmonary syndrome, and systemic hyperdynamic circulation. Redistribution of effective circulatory volume deviating from vital organs and pooling in splanchnic circulation is also encountered in liver patients which may lead to devastating outcomes as hepatorenal syndrome. Etiologically, vascular syndromes are not isolated phenomena and vascular dysfunction in one system may lead to the development of another in a different system. This review focuses on understanding the pathophysiological factors underlying vascular syndromes related to chronic liver disease and the potential links among them. Many of these syndromes are associated with high mortality, thus it is crucial to look for early biomarkers for these syndromes and develop novel preventive and therapeutic strategies.


Assuntos
Cirrose Hepática/complicações , Doenças Vasculares/etiologia , Circulação Colateral/fisiologia , Síndrome Hepatopulmonar/etiologia , Síndrome Hepatopulmonar/fisiopatologia , Síndrome Hepatorrenal/etiologia , Síndrome Hepatorrenal/fisiopatologia , Humanos , Hipertensão Portal/etiologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Circulação Hepática/fisiologia , Cirrose Hepática/fisiopatologia , Circulação Pulmonar/fisiologia , Circulação Esplâncnica/fisiologia , Síndrome , Doenças Vasculares/fisiopatologia , Vasodilatação/fisiologia
8.
J Transl Med ; 17(1): 81, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871575

RESUMO

BACKGROUND: Therapeutic plasma exchange (PE) or plasmapheresis is an extracorporeal procedure employed to treat immunological disorders. Exosomes, nanosized vesicles of endosomal origin, mediate intercellular communication by transferring cargo proteins and nucleic acids and regulate many pathophysiological processes. Exosomal miRNAs are potential biomarkers due to their stability and dysregulation in diseases including complex regional pain syndrome (CRPS), a chronic pain disorder with persistent inflammation. A previous study showed that a subset of CRPS patients responded to PE. METHODS: As a proof-of-concept, we investigated the PE-induced exosomal miRNA changes in six CRPS patients. Plasma cytokine levels were measured by HPLC and correlated with miRNA expression. Luciferase assay following co-transfection of HEK293 cells with target 3'UTR constructs and miRNA mimics was used to evaluate miRNA mediated gene regulation of target mRNA. Transient transfection of THP-1 cells with miRNA mimics followed by estimation of target gene and protein expression was used to validate the findings. RESULTS: Comparison of miRNAs in exosomes from the serum of three responders and three poor-responders showed that 17 miRNAs differed significantly before and after therapy. Of these, poor responders had lower exosomal hsa-miR-338-5p. We show that miR-338-5p can bind to the interleukin 6 (IL-6) 3' untranslated region and can regulate IL-6 mRNA and protein levels in vitro. PE resulted in a significant reduction of IL-6 in CRPS patients. CONCLUSIONS: We propose that lower pretreatment levels of miR-338-5p in poor responders are linked to IL-6 levels and inflammation in CRPS. Our data suggests the feasibility of exploring exosomal miRNAs as a strategy in patient stratification for maximizing therapeutic outcome of PE.


Assuntos
Síndromes da Dor Regional Complexa/sangue , Síndromes da Dor Regional Complexa/genética , Exossomos/genética , MicroRNAs/genética , Troca Plasmática , Regiões 3' não Traduzidas/genética , Adulto , Sequência de Bases , Exossomos/ultraestrutura , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Interleucina-6/sangue , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/sangue
10.
J Pain Res ; 11: 935-945, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29773953

RESUMO

BACKGROUND: Evidence is overwhelming for sex differences in pain, with women representing the majority of the chronic pain patient population. There is a need to explore novel avenues to elucidate this sex bias in the development of chronic inflammatory pain conditions. Complex regional pain syndrome (CRPS) is a chronic neuropathic pain disorder, and the incidence of CRPS is greater in women than in men by ~4:1. Since neurogenic inflammation is a key feature of CRPS, dysregulation of inflammatory responses can be a factor in predisposing women to chronic pain. METHODS: Our studies investigating alterations in circulating microRNAs (miRNAs) in whole blood from female CRPS patients showed significant differential expression of miRNAs between responders and poor responders to ketamine treatment. Several of these miRNAs are predicted to target the long noncoding RNA, X-inactive-specific transcript (XIST). XIST mediates X-chromosome inactivation and is essential for equalizing the expression of X-linked genes between females and males. Based on the well-established role in inflammatory process, we focused on miR-34a, one of the miRNAs predicted to target XIST, and downregulated in CRPS patients responding poorly to ketamine. RESULTS: Our in vitro and in vivo models of acute inflammation and data from patients with CRPS showed that miR-34a can regulate XIST under inflammation directly, and through pro-inflammatory transcription factor Yin-Yang 1 (YY1). XIST was significantly upregulated in a subset of CRPS patients responding poorly to ketamine. CONCLUSION: Since dysregulation of XIST can result in genes escaping inactivation or reactivation in female cells, further investigations on the role of XIST in the predominance of chronic inflammatory and pain disorders in women is warranted.

11.
Curr Protoc Pharmacol ; 79: 9.26.1-9.26.15, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29261225

RESUMO

Pharmacogenomic approaches used to investigate how genes affect drug responses are critical for designing personalized therapies aimed at maximizing efficacy and minimizing adverse effects. Drug efficacy is often dependent on the sequence and expression levels of drug target genes or those involved in the metabolism and transport of the therapeutic agent. Expression of these genes, in turn, is negatively regulated by small noncoding miRNAs. The levels of miRNAs in bodily fluids have been studied extensively as potential diagnostic and prognostic biomarkers. Studies have shown that miRNAs regulate multiple genes and sequence homology is used to predict which genes are subject to regulation by a particular miRNA. Once a gene is identified as a potential target for an miRNA of interest, experiments are undertaken to confirm that the miRNA interacts with the target gene and can alter its level of expression and/or its activity. For example, the differential expression of miRNAs in whole blood obtained from good and poor responders to ketamine has been reported both prior to, and following treatment for complex regional pain syndrome. In this case, hsa-miR-548d-5p was significantly lower in poor responders relative to good responders. This miRNA was predicted to target UDP-glucuronyl transferase 1A1 (UGT1A1), a key drug metabolizing enzyme. Described in this unit are protocols used to confirm miR-548d-5p-mediated UGT1A1 regulation. The approaches described can be employed broadly for the validation of miRNA-mediated negative regulation of any gene. Determining miRNA-mediated regulation of enzymes and transporters affecting drug metabolism is a critical step in designing personalized therapy and for understanding the mechanisms responsible for variations in the responses to therapeutic agents. © 2017 by John Wiley & Sons, Inc.


Assuntos
Glucuronosiltransferase/genética , MicroRNAs/genética , Regulação da Expressão Gênica , Glucuronosiltransferase/metabolismo , Células HEK293 , Células Hep G2 , Humanos , MicroRNAs/metabolismo , Preparações Farmacêuticas/metabolismo , RNA Mensageiro/genética
12.
Curr Protoc Pharmacol ; 79: 9.25.1-9.25.10, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29261227

RESUMO

MicroRNA(miRNA)-mediated gene regulation underlies cellular processes, playing an important role in homeostasis and diseases. The expression and function of miRNAs are altered by various pharmacological agents, with differences in the endogenous levels of miRNAs influencing drug efficacy and toxicity. Thus, miRNA levels could be a biomarker for predicting treatment response, efficacy, and safety. In addition, elucidating the mechanistic significance of miRNA alterations can aid in the identification of therapeutic targets and patient selection, and guide personalized therapy. Discussed in this overview are the properties of miRNA, their modulation, and the ways to measure them. The effects of different classes of analgesics, including opioid and non-opioid, are described as examples of drug-induced modifications of miRNA, with a discussion on how measurement of miRNA levels in patients receiving analgesic therapy can assist in maximizing effectiveness while minimizing the untoward responses to this drug class. © 2017 by John Wiley & Sons, Inc.


Assuntos
Analgésicos/farmacologia , MicroRNAs/metabolismo , Dor/metabolismo , Analgésicos/uso terapêutico , Animais , Humanos , Dor/tratamento farmacológico , Dor/genética
13.
Neurochem Res ; 42(5): 1279-1287, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28160199

RESUMO

GABAergic Interneuronal migration constitutes an essential process during corticogenesis. Derived from progenitor cells located in the proliferative zones of the ventral telencephalon, newly generated GABAergic Interneuron migrate to their cortical destinations. Cortical dysfunction associated with defects in neuronal migration results in severe developmental consequences. There is growing evidence linking prenatal ethanol exposure to abnormal GABAergic interneuronal migration and subsequent cortical dysfunction. Investigating the pathophysiological mechanisms behind disrupted GABAergic interneuronal migration encountered with prenatal alcohol exposure is crucial for understanding and managing fetal alcohol spectrum disorders. This review explores the molecular pathways regulating GABAergic interneuronal cortical migration that might be altered by prenatal ethanol exposure thus opening new avenues for further research in this topic.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/metabolismo , Etanol/toxicidade , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Etanol/administração & dosagem , Feminino , Transtornos do Espectro Alcoólico Fetal/etiologia , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Espectro Alcoólico Fetal/patologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/patologia , Humanos , Interneurônios/efeitos dos fármacos , Interneurônios/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia
14.
Clin Med Insights Pathol ; 9(Suppl 1): 1-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27660518

RESUMO

Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs) can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages.

15.
J Transl Med ; 14: 64, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26940669

RESUMO

BACKGROUND: Ketamine provides relief for a subset of patients with complex regional pain syndrome (CRPS). The poor responders had a lower body mass index (BMI) relative to responders. Regulation of proopiomelanocortin (POMC) expression is crucial in normal body weight homeostasis. The main objectives of this study were to investigate the mechanisms underlying lower BMI characterizing CRPS patients responding poorly to intravenous ketamine therapy and identify potential biomarkers for predicting response. METHODS: We investigated POMC transcript levels in blood from CRPS patients grouped as responders and poor responders to ketamine therapy. Plasma levels of ß-endorphin, ACTH and α-MSH were measured by ELISA. We previously identified differential expression of small noncoding microRNA hsa-miR-34a in blood between responders and poor responders. We investigated whether a 11-fold downregulation of hsa-miR-34a in poor responders relative to responders is contributing to the differences in POMC levels by targeting POMC regulator CRHR1. Binding of miR-34a to CRHR1 was assessed using reporter assay; changes in mRNA and protein levels of CRHR1 were used to determine the regulation of CRHR1 by miR-34a. RNA from blood of CRPS and control subjects were used for quantitative PCR for CRHR1. RESULTS: Though ketamine treatment did not alter POMC expression, poor responders had higher levels of POMC mRNA than responders, both before and after treatment. Corticotropin-releasing hormone (CRH) is a key regulator of POMC expression and the biological effects are mediated through its receptor corticotrophin releasing hormone receptor 1 (CRHR1). We show that hsa-miR-34a is a negative regulator of CRHR1; overexpression of hsa-miR-34a in Jurkat cells resulted in reduction of CRH-mediated POMC expression. Poor responders had higher expression of CRHR1 transcripts than responders, indicating a regulatory role for miR-34a. In addition, we found positive correlations between the pretreatment levels of miR-34a to BMI and response to ketamine therapy. CONCLUSIONS: Our findings indicate a mechanism by which hsa-miR-34a can regulate the CRH/CRHR1/POMC axis and may influence BMI. Studies in larger patient cohorts are required to confirm the biomarker utility of circulating hsa-miR-34a levels in predicting treatment response to ketamine therapy.


Assuntos
Síndromes da Dor Regional Complexa/genética , MicroRNAs/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Hormônio Adrenocorticotrópico/sangue , Índice de Massa Corporal , Síndromes da Dor Regional Complexa/sangue , Síndromes da Dor Regional Complexa/tratamento farmacológico , Regulação da Expressão Gênica , Células HEK293 , Humanos , Células Jurkat , Ketamina/uso terapêutico , MicroRNAs/genética , Pró-Opiomelanocortina/sangue , Receptores de Hormônio Liberador da Corticotropina/genética , Reprodutibilidade dos Testes , alfa-MSH/sangue , beta-Endorfina/sangue
16.
J Pain ; 16(9): 814-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26072390

RESUMO

Although ketamine is beneficial in treating complex regional pain syndrome (CRPS), a subset of patients respond poorly to therapy. We investigated treatment-induced microRNA (miRNA) changes and their predictive validity in determining treatment outcome by assessing miRNA changes in whole blood from patients with CRPS. Blood samples from female patients were collected before and after 5 days of intravenous ketamine administration. Seven patients were responders and 6 were poor responders. Differential miRNA expression was observed in whole blood before and after treatment. In addition, 33 miRNAs differed between responders and poor responders before therapy, suggesting the predictive utility of miRNAs as biomarkers. Investigation of the mechanistic significance of hsa-miR-548d-5p downregulation in poor responders showed that this miRNA can downregulate UDP-glucuronosyltransferase UGT1A1 mRNA. Poor responders had a higher conjugated/unconjugated bilirubin ratio, indicating increased UGT1A1 activity. We propose that lower pretreatment levels of miR-548d-5p may result in higher UDP-GT activity, leading to higher levels of inactive glucuronide conjugates, thereby minimizing the therapeutic efficacy of ketamine in poor responders. Differences in miRNA signatures can provide molecular insights distinguishing responders from poor responders. Extending this approach to other treatment and outcome assessments might permit stratification of patients for maximal therapeutic outcome. Perspective: This study suggests the usefulness of circulating miRNAs as potential biomarkers. Assessing miRNA signatures before and after treatment demonstrated miRNA alterations from therapy; differences in miRNA signature in responders and poor responders before therapy indicate prognostic value. Mechanistic studies on altered miRNAs can provide new insights into disease.


Assuntos
Analgésicos/uso terapêutico , Síndromes da Dor Regional Complexa/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Ketamina/uso terapêutico , MicroRNAs/sangue , Administração Intravenosa , Adulto , Idoso , Síndromes da Dor Regional Complexa/sangue , Feminino , Glucuronosiltransferase/sangue , Glucuronosiltransferase/genética , Células Hep G2 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Estatística como Assunto , Transfecção
17.
Transl Stroke Res ; 6(3): 181-90, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25860439

RESUMO

The Na(+)/Ca(2+) exchanger (NCX) plays an important role in the maintenance of Na(+) and Ca(2+) homeostasis in most cells including neurons under physiological and pathological conditions. It exists in three subtypes (NCX1-3) with different tissue distributions but all of them are present in the brain. NCX transports Na(+) and Ca(2+) in either Ca(2+)-efflux (forward) or Ca(2+)-influx (reverse) mode, depending on membrane potential and transmembrane ion gradients. During neuronal ischemia, Na(+) and Ca(2+) ionic disturbances favor NCX to work in reverse mode, giving rise to increased intracellular Ca(2+) levels, while it may regain its forward mode activity on reperfusion. The exact significance of NCX in neuronal ischemic and reperfusion states remains unclear. The differential role of NCX subtypes in ischemic neuronal injury has been extensively investigated using various pharmacological tools as well as genetic models. This review discusses the mode of action of NCX in ischemic and reperfusion states, the differential roles played by NCX subtypes in these states as well as the role of NCX in pre- and postconditioning. NCX subtypes carry variable roles in ischemic injury. Furthermore, the mode of action of each subtype varies in ischemia and reperfusion states. Thus, therapeutic targeting of NCX in stroke should be based on appropriate timing of the administration of NCX subtype-specific strategies.


Assuntos
Isquemia Encefálica/metabolismo , Traumatismo por Reperfusão/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Humanos , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...