Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(48): 55713-55722, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38058104

RESUMO

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes are considered promising materials for realizing high-safety and high-energy-density lithium metal batteries. However, the high crystallinity of PEO at room temperature triggers low ionic conductivity and Li+ transference number, critically hindering practical applications in solid-state lithium metal batteries. Herein, we prepared nanosized TiO2 with enriched oxygen vacancies down to 13 nm as fillers by laser irradiation, which can be coated by in situ generated polyacetonitrile, ensuring good dispersibility in PEO. The electrolytes with nanosized TiO2 show a combination of high ionic conductivity, high Li+ transference number, superior electrochemical stability, and enhanced mechanical robustness. Accordingly, the lithium symmetric batteries with nanosized TiO2 composite solid electrolytes exhibit a stable cycling life up to 590 h at 0.25 mA cm-2. The full Li metal batteries paired with a LiFePO4 cathode deliver superior durability for 550 cycles. Moreover, the proof-of-concept pouch cells demonstrate excellent safety performance under various harsh conditions. This work provides a realistic guide in designing novel fillers to achieve stable operation of high-safety and energy-dense solid-state lithium metal batteries.

2.
Faraday Discuss ; 134: 41-9; discussion 103-18, 415-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17326561

RESUMO

Scandia stabilised zirconias offer much better electrical performance than conventional yttria stabilised materials; however, the limited availability and high cost of scandia have generally limited interest in its application in fuel cells. Political and economic changes over the last decade have significantly enhanced scandia's availability, rendering it worth considering for commercial application, even though there is still some uncertainty about its ultimate market price. A small addition of 2 mol% yttria to scandia stabilised zirconia results in stabilisation of the cubic phase and so avoids the major phase changes that occur on thermal cycling of scandia substituted zirconias, which might be expected to be detrimental to long term electrolyte stability. This addition of yttria does slightly impair the electrical conductivity of the scandia stabilised zirconia, although this can be reversed by further addition of ceria. Samples which are cubic throughout the studied temperature range basically show two linear conductivity regions in Arrhenius conductivity plots. A key observation is that the low temperature activation energy decreases and the high temperature activation energy increases as yttrium content increases and scandium content decreases. This correlates with the strength of short-range order as indicated by neutron and electron diffraction studies. Although scandia substitution increases conductivity and decreases high temperature activation energy, it also increases the tendency to short-range ordering at lower temperatures, resulting in a significant increase in activation energy for conduction. This is attributed to the ionic size of the Sc ion which favours a lower coordination number than that associated with ideal fluorite phases. It should also be realised that Zr, which has a similar size to Sc, also prefers a lower coordination number than is ideal for fluorite hence driving the tendency for short-range order in zirconia fluorites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...