Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38076518

RESUMO

Malignant pleural mesothelioma (MPM) is the most common form of malignant mesothelioma, with exposure to asbestos being the primary cause of the disease. To assess response to treatment, tumor measurements are acquired and evaluated based on a patient's longitudinal computed tomography (CT) scans. Tumor volume, however, is the more accurate metric for assessing tumor burden and response. Automated segmentation methods using deep learning can be employed to acquire volume, which otherwise is a tedious task performed manually. The deep learning-based tumor volume and contours can then be compared with a standard reference to assess the robustness of the automated segmentations. The purpose of this study was to evaluate the impact of probability map threshold on MPM tumor delineations generated using a convolutional neural network (CNN). Eighty-eight CT scans from 21 MPM patients were segmented by a VGG16/U-Net CNN. A radiologist modified the contours generated at a 0.5 probability threshold. Percent difference of tumor volume and overlap using the Dice Similarity Coefficient (DSC) were compared between the standard reference provided by the radiologist and CNN outputs for thresholds ranging from 0.001 to 0.9. CNN annotations consistently yielded smaller tumor volumes than radiologist contours. Reducing the probability threshold from 0.5 to 0.1 decreased the absolute percent volume difference, on average, from 43.96% to 24.18%. Median and mean DSC ranged from 0.58 to 0.60, with a peak at a threshold of 0.5; no distinct threshold was found for percent volume difference. The CNN exhibited deficiencies with specific disease presentations, such as severe pleural effusion or disease in the pleural fissure. No single output threshold in the CNN probability maps was optimal for both tumor volume and DSC. This study emphasized the importance of considering both figures of merit when evaluating deep learning-based tumor segmentations across probability thresholds. This work underscores the need to simultaneously assess tumor volume and spatial overlap when evaluating CNN performance. While automated segmentations may yield comparable tumor volumes to that of the reference standard, the spatial region delineated by the CNN at a specific threshold is equally important.

2.
J Med Imaging (Bellingham) ; 10(6): 064504, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38162317

RESUMO

Purpose: The purpose is to assess the performance of a pre-trained deep learning model in the task of classifying between coronavirus disease (COVID)-positive and COVID-negative patients from chest radiographs (CXRs) while considering various image acquisition parameters, clinical factors, and patient demographics. Methods: Standard and soft-tissue CXRs of 9860 patients comprised the "original dataset," consisting of training and test sets and were used to train a DenseNet-121 architecture model to classify COVID-19 using three classification algorithms: standard, soft tissue, and a combination of both types of images via feature fusion. A larger more-current test set of 5893 patients (the "current test set") was used to assess the performance of the pretrained model. The current test set contained a larger span of dates, incorporated different variants of the virus and included different immunization statuses. Model performance between the original and current test sets was evaluated using area under the receiver operating characteristic curve (ROC AUC) [95% CI]. Results: The model achieved AUC values of 0.67 [0.65, 0.70] for cropped standard images, 0.65 [0.63, 0.67] for cropped soft-tissue images, and 0.67 [0.65, 0.69] for both types of cropped images. These were all significantly lower than the performance of the model on the original test set. Investigations regarding matching the acquisition dates between the test sets (i.e., controlling for virus variants), immunization status, disease severity, and age and sex distributions did not fully explain the discrepancy in performance. Conclusions: Several relevant factors were considered to determine whether differences existed in the test sets, including time period of image acquisition, vaccination status, and disease severity. The lower performance on the current test set may have occurred due to model overfitting and a lack of generalizability.

3.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32644051

RESUMO

In pulmonary hypertension and certain forms of congenital heart disease, ventricular pressure overload manifests at birth and is an obligate hemodynamic abnormality that stimulates myocardial fibrosis, which leads to ventricular dysfunction and poor clinical outcomes. Thus, an attractive strategy is to attenuate the myocardial fibrosis to help preserve ventricular function. Here, by analyzing RNA-sequencing databases and comparing the transcript and protein levels of fibrillar collagen in WT and global-knockout mice, we found that slit guidance ligand 3 (SLIT3) was present predominantly in fibrillar collagen-producing cells and that SLIT3 deficiency attenuated collagen production in the heart and other nonneuronal tissues. We then performed transverse aortic constriction or pulmonary artery banding to induce left and right ventricular pressure overload, respectively, in WT and knockout mice. We discovered that SLIT3 deficiency abrogated fibrotic and hypertrophic changes and promoted long-term ventricular function and overall survival in both left and right ventricular pressure overload. Furthermore, we found that SLIT3 stimulated fibroblast activity and fibrillar collagen production, which coincided with the transcription and nuclear localization of the mechanotransducer yes-associated protein 1. These results indicate that SLIT3 is important for regulating fibroblast activity and fibrillar collagen synthesis in an autocrine manner, making it a potential therapeutic target for fibrotic diseases, especially myocardial fibrosis and adverse remodeling induced by persistent afterload elevation.


Assuntos
Fibrose/genética , Proteínas de Membrana/deficiência , Miocárdio/patologia , Remodelação Ventricular/genética , Animais , Colágeno/metabolismo , Ecocardiografia/métodos , Coração/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Hipertensão Pulmonar/metabolismo , Camundongos Knockout
4.
J Med Imaging (Bellingham) ; 7(6): 064007, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33409336

RESUMO

Purpose: The goal of this study was to quantify the effects of iterative reconstruction on radiomics features of normal anatomic structures on head and neck computed tomography (CT) scans. Methods: Regions of interest (ROI) containing five different tissue types and an ROI containing only air were extracted from CT scans of the head and neck from 108 patients. Each scan was reconstructed using three different iDose 4 reconstruction levels (2, 4, and 6) in addition to bone, thin slice (1-mm slice thickness), and thin-bone reconstructions. From each ROI in all reconstructions, 142 radiomic features were calculated. For each of the six ROIs, features were compared between combinations of iDose levels (2v4, 4v6, and 2v6) with a threshold of α = 0.05 after correcting for multiple comparisons ( p < 0.00006 ). Features from iDose 4 - 2 reconstructions were also compared to bone, thin slice, and thin-bone reconstructions. Spearman's rank correlation coefficient, ρ , quantified the relative feature value agreement across iDose 4 reconstructions. Results: When comparing radiomics features across the three iDose 4 reconstruction levels, over half of all features reflected significant differences for all tissue types, while no features demonstrated significant differences when extracted from air ROIs. When assessing feature value agreement, at least 97% of features reflected excellent agreement ( ρ > 0.9 ) when comparing the three iDose levels for all ROIs. When comparing iDose 4 - 2 to bone, thin slice, and thin-bone reconstructions, more than half of all features demonstrated significant differences for all ROIs and 89 % of features reflected excellent agreement for all ROIs. Conclusion: Many radiomics features are dependent on the iterative reconstruction level, and the magnitude of this dependency is affected by the tissue from which features are extracted. For studies using images reconstructed using varying iDose 4 reconstruction levels, features robust to these should be used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...