Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 6(15): 7955-7964, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37592930

RESUMO

To solve the toxicity issues related to lead-based halide perovskite solar cells, the lead-free double halide perovskite Cs2AgBiBr6 is proposed. However, reduced rate of charge transfer in double perovskites affects optoelectronic performance. We designed a series of pyridine-based small molecules with four different arms attached to the pyridine core as hole-selective materials by using interface engineering. We quantified how arm modulation affects the structure-property-device performance relationship. Electrical, structural, and spectroscopic investigations show that the N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9H-carbazole-3,6-diamine arm's robust association with the pyridine core results in an efficient hole extraction for PyDAnCBZ due to higher spin density close to the pyridine core. The solar cells fabricated using Cs2AgBiBr6 as a light harvester and PyDAnCBZ as the hole selective layer measured an unprecedented 2.9% power conversion efficiency. Our computed road map suggests achieving ∼5% efficiency through fine-tuning of Cs2AgBiBr6. Our findings reveal the principles for designing small molecules for electro-optical applications as well as a synergistic route to develop inorganic lead-free perovskite materials for solar applications.

2.
Org Biomol Chem ; 21(18): 3896-3905, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165921

RESUMO

Triphenylamine (TPA) substituted π-conjugated chromophores TPA1-TPA5 were designed and synthesized via Pd-catalysed Sonogashira cross-coupling followed by [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions. The effects of acceptor 1,1,4,4-tetracyanobutadiene (TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD (DCNQ) units in the photophysical studies and the HOMO-LUMO energy levels of the phenothiazine sulfones TPA1-TPA5 were evaluated. The absorption spectra of chromophores TPA4 and TPA5 show a significant change due to the incorporation of DCNQ units, resulting in bathochromically shifted broad absorption in the NIR region. The photophysical studies revealed that DCNQ-based chromophores TPA4 and TPA5 have a better D-A interaction than the TCBD functionalized TPA2 and TPA3. Density functional theory calculations and electrochemical studies were performed to examine the molecular geometry and frontier energy levels of the sulfone-based chromophores. Systematic structural modification of the chromophore TPA1 modulated the electrochemical properties and successively tuned the energy gaps for TPA2-TPA5. The theoretically estimated HOMO-LUMO gaps for TPA1-TPA5 exhibit good agreement with the experimental data calculated from the electrochemical studies. The chromophore TPA1 exhibits solvatochromism and aggregation-induced emission (AIE) behavior owing to the emission in the solid state.

3.
J Phys Chem B ; 127(12): 2761-2773, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36938962

RESUMO

Prolonging the lifetime of charge-separated states (CSS) is of paramount importance in artificial photosynthetic donor-acceptor (DA) constructs to build the next generation of light-energy-harvesting devices. This becomes especially important when the DA constructs are closely spaced and highly interacting. In the present study, we demonstrate extending the lifetime of the CSS in highly interacting DA constructs by making use of the triplet excited state of the electron donor and with the help of excitation wavelength selectivity. To demonstrate this, π-conjugated phenothiazine sulfone-based push-pull systems, PTS2-PTS6 have been newly designed and synthesized via the Pd-catalyzed Sonogashira cross-coupling followed by [2 + 2] cycloaddition-retroelectrocyclization reactions. Modulation of the spectral and photophysical properties of phenothiazine sulfones (PTZSO2) and terminal phenothiazines (PTZ) was possible by incorporating powerful electron acceptors, 1,1,4,4-tetracyanobutadiene (TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD (exTCBD). The quadrupolar PTS2 displayed solvatochromism, aggregation-induced emission, and mechanochromic behaviors. From the energy calculations, excitation wavelength-dependent charge stabilization was envisioned in PTS2-PTS6, and the subsequent pump-probe spectroscopic studies revealed charge stabilization when the systems were excited at the locally excited peak positions, while such effect was minimal when the samples were excited at wavelengths corresponding to the CT transitions. This work reveals the impact of wavelength selectivity to induce charge separation from the triplet excited state in ultimately prolonging the lifetime of CCS in highly interacting push-pull systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...