Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 29(2): 191-201.e8, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34348113

RESUMO

We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression.


Assuntos
Acetato-CoA Ligase/antagonistas & inibidores , Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Acetato-CoA Ligase/metabolismo , Antimaláricos/química , Inibidores Enzimáticos/química , Humanos , Malária/metabolismo , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia
2.
J Bacteriol ; 188(22): 7905-13, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16980471

RESUMO

The exosporium-defective phenotype of a transposon insertion mutant of Bacillus cereus implicated ExsY, a homologue of B. subtilis cysteine-rich spore coat proteins CotY and CotZ, in assembly of an intact exosporium. Single and double mutants of B. cereus lacking ExsY and its paralogue, CotY, were constructed. The exsY mutant spores are not surrounded by an intact exosporium, though they often carry attached exosporium fragments. In contrast, the cotY mutant spores have an intact exosporium, although its overall shape is altered. The single mutants show altered, but different, spore coat properties. The exsY mutant spore coat is permeable to lysozyme, whereas the cotY mutant spores are less resistant to several organic solvents than is the case for the wild type. The exsY cotY double-mutant spores lack exosporium and have very thin coats that are permeable to lysozyme and are sensitive to chloroform, toluene, and phenol. These spore coat as well as exosporium defects suggest that ExsY and CotY are important to correct formation of both the exosporium and the spore coat in B. cereus. Both ExsY and CotY proteins were detected in Western blots of purified wild-type exosporium, in complexes of high molecular weight, and as monomers. Both exsY and cotY genes are expressed at late stages of sporulation.


Assuntos
Bacillus cereus/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Bactérias/genética , Dados de Sequência Molecular , Esporos Bacterianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...