Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 95, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168577

RESUMO

Synthetic antiferromagnetic structures can exhibit the advantages of high velocity similarly to antiferromagnets with the additional benefit of being imaged and read-out through techniques applied to ferromagnets. Here, we explore the potential and limits of synthetic antiferromagnets to uncover ways to harness their valuable properties for applications. Two synthetic antiferromagnetic systems have been engineered and systematically investigated to provide an informed basis for creating devices with maximum potential for data storage, logic devices, and skyrmion racetrack memories. The two systems considered are (system 1) CoB/Ir/Pt of N repetitions with Ir inducing the negative coupling between the ferromagnetic layers and (system 2) two ferromagnetically coupled multilayers of CoB/Ir/Pt, coupled together antiferromagnetically with an Ir layer. From the hysteresis, it is found that system 1 shows stable antiferromagnetic interlayer exchange coupling between each magnetic layer up to N = 7. Using Kerr imaging, the two ferromagnetic multilayers in system 2 are shown to undergo separate maze-like switches during hysteresis. Both systems are also studied as a function of temperature and show different behaviors. Micromagnetic simulations predict that in both systems the skyrmion Hall angle is suppressed with the skyrmion velocity five times higher in system 1 than system 2.

2.
J Am Chem Soc ; 143(3): 1386-1398, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33442970

RESUMO

The piezoelectric devices widespread in society use noncentrosymmetric Pb-based oxides because of their outstanding functional properties. The highest figures of merit reported are for perovskites based on the parent Pb(Mg1/3Nb2/3)O3 (PMN), which is a relaxor: a centrosymmetric material with local symmetry breaking that enables functional properties, which resemble those of a noncentrosymmetric material. We present the Pb-free relaxor (K1/2Bi1/2)(Mg1/3Nb2/3)O3 (KBMN), where the thermal and (di)electric behavior emerges from the discrete structural roles of the s0 K+ and s2 Bi3+ cations occupying the same A site in the perovskite structure, as revealed by diffraction methods. This opens a distinctive route to Pb-free piezoelectrics based on relaxor parents, which we demonstrate in a solid solution of KBMN with the Pb-free ferroelectric (K1/2Bi1/2)TiO3, where the structure and function evolve together, revealing a morphotropic phase boundary, as seen in PMN-derived systems. The detailed multiple-length-scale understanding of the functional behavior of KBMN suggests that precise chemical manipulation of the more diverse local displacements in the Pb-free relaxor will enhance performance.

3.
Sci Rep ; 9(1): 2442, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792435

RESUMO

The mechanisms underlying the anomalously large, room temperature piezoelectric activity of relaxor-PbTiO3 type single crystals have previously been linked to low temperature relaxations in the piezoelectric and dielectric properties. We investigate the properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 between 10 and 300 K using dielectric permittivity measurements. We compare results on single crystal plates measured in the [001] and [111] directions with a polycrystalline ceramic of the same composition. Poled crystals have very different behaviour to unpoled crystals, whereas the dielectric spectrum of the polycrystalline ceramic changes very little on poling. A large, frequency dependent dielectric relaxation is seen in the poled [001] crystal around 100 K. The relaxation is much less prominent in the [111] cut crystal, and is not present in the polycrystalline ceramic. The unique presence of the large relaxation in poled, [001] oriented crystals indicates that the phenomenon is not due their relaxor nature alone. We propose that heterophase dynamics such as the motion of phase domain boundaries are responsible for both the anomalous electromechanical and dielectric behaviour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...