Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Pharmacol Ther ; 261: 108688, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972453

RESUMO

Antibiotic-resistant bacteria are currently an important public health concern posing a serious threat due to their resistance to the current arsenal of antibiotics. Uropathogens Escherichia coli (UPEC), Proteus mirabilis, Klebsiella pneumoniae and Enterococcus faecalis, antibiotic-resistant gram-negative bacteria, cause serious cases of prolonged UTIs, increasing healthcare costs and potentially even leading to the death of an affected patient. This review discusses current knowledge about the increasing resistance to currently recommended antibiotics for UTI therapy, as well as novel therapeutic options. Traditional antibiotics are still a part of the therapy guidelines for UTIs, although they are often not effective and have serious side effects. Hence, novel drugs are being developed, such as combinations of ß-lactam antibiotics with cephalosporins and carbapenems. Siderophoric cephalosporins, such as cefiderocol, have shown potential in the treatment of individuals with significant gram-negative bacterial infections, as well as aminoglycosides, fluoroquinolones and tetracyclines that are also undergoing clinical trials. The use of cranberry and probiotics is another potential curative and preventive method that has shown antimicrobial and anti-inflammatory effects. However, further studies are needed to assess the efficacy and safety of probiotics containing cranberry extract for UTI prevention and treatment. An emerging novel approach for UTI treatment is the use of immuno-prophylactic vaccines, as well as different nanotechnology solutions such as nanoparticles (NP). NP have the potential to be used as delivery systems for drugs to specific targets. Furthermore, nanotechnology could enable the development of nano antibiotics with improved features by the application of different NPs in their structure, such as gold and copper NPs. However, further high-quality research is required for the synthesis and testing of these novel molecules, such as safety evaluation and pharmacovigilance.

2.
Int J Pharm ; 660: 124345, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38885775

RESUMO

Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.


Assuntos
Sistemas de Liberação de Medicamentos , Nanomedicina , Nanotecnologia , Neoplasias , Viroses , Humanos , Animais , Neoplasias/tratamento farmacológico , Viroses/tratamento farmacológico , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanopartículas , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antivirais/administração & dosagem , Antivirais/química
3.
Int J Biol Macromol ; 270(Pt 1): 132346, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750859

RESUMO

The impact of dual sequential modifications using radio-frequency (RF) plasma and electron beam irradiation (EBI) on starch properties was investigated and compared with single treatments within an irradiation dose range of 5-20 kGy. Regardless of sequence, dual treatments synergistically affected starch properties, increasing acidity, solubility, and paste clarity, while decreasing rheological features with increasing irradiation dose. The molecular weight distribution was also synergistically influenced. Amylopectin distribution broadened particularly below 10 kGy. Amylose narrowed its distribution across all irradiation doses. This was due to dominating EBI-induced degradation and molecular rearrangements from RF plasma. With the highest average radiation-chemical yield (G) and degradation rate constant (k) of (2.12 ± 0.14) × 10-6 mol·J-1 and (3.43 ± 0.23) × 10-4 kGy-1, respectively, upon RF plasma pre-treatment, amylose underwent random chain scission. In comparison to single treatments, dual modification caused minor alterations in spectral characteristics and crystal short-range order structure, along with increased granule aggregation and surface irregularities. The synergistic effect was dose-dependent, significant up to 10 kGy, irrespective of treatment sequence. The highest synergistic ratio was observed when RF plasma preceded irradiation, demonstrating the superior efficiency of plasma pre-treatment in combination with EBI. This synergy has the potential to lower costs and extend starch's technological uses by enhancing radiation sensitivity and reducing the irradiation dose.


Assuntos
Elétrons , Peso Molecular , Gases em Plasma , Amido , Amido/química , Gases em Plasma/farmacologia , Gases em Plasma/química , Solubilidade , Amilose/química , Amilopectina/química , Reologia
4.
Chem Biol Interact ; 388: 110838, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38104745

RESUMO

Drug-induced nephrotoxicity is still a significant obstacle in pharmacotherapy of various diseases and it accounts for around 25 % of serious side-effects reported after drug administration. Furthermore, some groups of drugs such as nonsteroidal anti-inflammatory drugs, antibiotics, antiviral drugs, antifungal drugs, immunosuppressants, and chemotherapeutic drugs have the "preference" for damaging the kidney and are often referred to as the kidney's "silent killer". Clinically, the onset of acute kidney injury associated with drug administration is registered in approximately 20 % of patients and many of them develop chronic kidney disease vulnerability. However, current knowledge about the mechanisms underlying this dangerous phenomenon is still insufficient with many unknowns. Hence, the valuable use of these drugs in clinical practice is significantly limited. The main aim of this study is to draw attention to commonly prescribed nephrotoxic drugs by clinicians or drugs bought over the counter. In addition, the complex relationship between immunological, vascular and inflammatory events that promote kidney damage is discussed. The practical use of this knowledge could be implemented in the engineering of novel biomarkers for early detection of drug-associated kidney damage such as Kidney Injury Molecule (KIM-1), lipocalin associated with neutrophil gelatinase (NGAL) and various microRNAs. In addition, the utilization of artificial intelligence (AI) for the development of computer algorithms that could detect kidney damage at an early stage should be further explored. Therefore, this comprehensive review provides a new outlook on drug nephrotoxicity that opens the door for further clinical research of novel potential drugs or natural products for the prevention of drug-induced nephrotoxicity and accessible education.


Assuntos
Injúria Renal Aguda , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Lipocalina-2 , Inteligência Artificial , Rim , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Biomarcadores
5.
Phys Chem Chem Phys ; 25(46): 31726-31740, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964641

RESUMO

In the current era, alternative but environment-friendly sources of energy have gained attention to meet the growing energy demands. In particular, the focus of research has been solar energy and using it to fulfill energy demands. Solar energy is either directly converted into electrical energy or stored for later use. Solar cells are a practical way to turn solar energy into electrical energy. Various materials are being investigated to manufacture solar cell devices that can absorb a maximum number of photons present in sunlight. The present study reports thermally evaporated in situ Cu-doped SnS photon absorber thin films with tunable physical properties. This study mainly explored the effects of changing Cu concentrations on the physical features of light absorption of SnS thin films. The thin films were formed by simultaneous resistive heating of Cu and SnS powders on glass substrates at 150 °C. The X-ray diffraction patterns revealed pure SnS thin films having orthorhombic polycrystalline crystal structures oriented preferentially along the (111) plane. Raman spectroscopy confirmed this phase purity. Photoconductivity studies showed phase dependence on Cu content that improved with increasing concentrations of Cu. The optical bandgap energy was also found to be dependent on Cu content and was observed at 1.10-1.47 eV for SnS thin films with variation in the Cu content, i.e., 0-18%. According to the hot probe method, all films displayed p-type conductivity for the substitution of Cu metal atoms. These findings demonstrated that the prepared thin films are substantial candidates as low-cost, suitably efficient, thin-film solar cells featuring environmentally-friendly active layers that absorb sunlight.

6.
Diabetes Metab Syndr ; 17(11): 102901, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37951098

RESUMO

BACKGROUND: Neuropathy is among the most often reported consequences of diabetes and the biggest cause of morbidity and mortality in people suffering from this life-long disease. Although different therapeutic methods are available for diabetic neuropathy, it is still the leading cause of limb amputations, and it significantly decreases patients' quality of life. AIM: This study investigates potential novel therapeutic options that could ameliorate symptoms of DN. METHODOLOGY: Research and review papers from the last 10 years were taken into consideration. RESULTS: There are various traditional drugs and non-pharmacological methods used to treat this health condition. However, the research in the area of pathogenic-oriented drugs in the treatment of DN showed no recent breakthroughs, mostly due to the limited evidence about their effectiveness and safety obtained through clinical trials. Consequently, there is an urgent demand for the development of novel therapeutic options for diabetic neuropathy. CONCLUSION: Some of the latest novel diagnostic methods for diagnosing diabetic neuropathy are discussed as well as the new therapeutic approaches, such as the fusion of neuronal cells with stem cells, targeting gene delivery and novel drugs.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Humanos , Neuropatias Diabéticas/terapia , Neuropatias Diabéticas/tratamento farmacológico , Qualidade de Vida , Amputação Cirúrgica
7.
Front Chem ; 11: 1279948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033474

RESUMO

Presently, the main cause of pollution of natural water resources is heavy metal ions. The removal of metal ions such as nickel (Ni2+) and cadmium (Cd2+) has been given considerable attention due to their health and environmental risks. In this regard, for wastewater treatment containing heavy metal ions, graphene oxide (GO) nanocomposites with metal oxide nanoparticles (NPs) attained significant importance. In this study, graphene oxide stacked with copper oxide nanocomposites (GO/CuO-NCs) were synthesized and characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and atomic force microscopy (AFM) analytical procedures. The prepared GO/CuO-NCs were applied for the removal of Ni2+ and Cd2+ ions from a binary metal ion system in batch and continuous experiments. The obtained results revealed that GO/CuO-NCs exhibited the highest removal efficiencies of Ni2+ (89.60% ± 2.12%) and Cd2+ (97.10% ± 1.91%) at the optimum values of pH: 8, dose: 0.25 g, contact time: 60 min, and at 50 ppm initial metal ion concentration in a batch study. However, 4 mL/min flow rate, 50 ppm initial concentration, and 2 cm bed height were proved to be the suitable conditions for metal ion adsorption in the column study. The kinetic adsorption data exhibited the best fitting with the pseudo-second-order model. The adsorption isotherm provided the best-fitting data in the Langmuir isotherm model. This study suggested that the GO/CuO nanocomposites have proved to be efficient adsorbents for Ni2+ and Cd2+ ions from a binary metal system.

8.
Sci Total Environ ; 905: 166950, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37696405

RESUMO

Biochar is a soil amendment that can change soil's physical and hydraulic properties. However, biochar application is far from being a 'one size fits-all' approach. The impact of the management practices is dependent on biochar type (feedstock and production conditions), application depth and method, climate and site characteristics. Hence, this study aims to enrich the available inconclusive information on how biochar could affect clay loamy soil and to assess the potential impact of the induced change on water stress mitigation of rain-fed durum wheat under the specific condition of the semi-arid environment of North West of Tunisia. A field experiment was investigated in which three biochar rates 0 (B0), 10 (equivalent to 0.5% of weight) (B1) and 20 t/ha (equivalent to 1% of weight), (B2), were tested. Other laboratory analysis allowed the evaluation of soil water retention curve (SWRC), saturated hydraulic conductivity (Ks), dry density (ρb) and biostress biomarkers such as glutathione-S-transferase (GST), catalase activities (CAT) and malondialdehyde content (MDA) as well as yield attributes. Results showed that treatment B2 significantly decreased ρb and Ks with relative change values of about -3.1% and -19%. Consequently, SWRC showed a better water retention capacity, mostly from saturation to matric potential value (h) of 33 kPa. Total (TAWC), plant (PAWC) and readily (RAWC) available water contents, significantly increased under B2 with relative changes of +6%, +44% and +44% respectively. Moreover, GST and CAT were also boosted under B2. Consequently, biological and grain yields as well as grain water use efficiency (GWUE) significantly increased. GWUE increased from 0.81 ± 0.04 in B0 to 1.09 ± 0.01 kg/m3 in B2. The correlation analysis showed a significant and positive correlation, between GWUE and soil water parameters (θs, θfc and θmre) suggesting the indirect effect of biochar on water-use efficiency for grain yield of wheat. Therefore, among the tested rates 20 t/ha could be suggested to improve plant soil water availability and reduce the harmful impact of drought stress on rain-fed durum wheat.


Assuntos
Antioxidantes , Desidratação , Carvão Vegetal/farmacologia , Solo , Produtos Agrícolas , Grão Comestível
9.
Mol Biotechnol ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702881

RESUMO

Angiotensin-converting enzyme inhibitors (ACEIs) reduce arterial stiffness beyond their antihypertensive effect. Studies showed that sulfhydryl ACEIs have the antioxidative potential to improve endothelial function, which might have a clinical effect on arterial distensibility. However, there are no studies that directly compare the effects of sulfhydryl (zofenopril) and non-sulfhydryl ACEIs (enalapril) on arterial stiffness. Therefore, this prospective study aims to compare the effects of enalapril and zofenopril on arterial stiffness and oxidative stress in both short- and long-term treatment of arterial hypertension (AH). Baseline and post-treatment peripheral and central arterial pressure indices, augmentation index (Aix), aortic pulse wave velocity (ao-PWV), serum levels of oxidized low-density cholesterol lipoprotein, LDL and uric acid (UA) were measured. The results showed that acute treatment with zofenopril, in contrast to enalapril, significantly decreased peripheral and central Aix (p < 0.001). Chronic treatment with zofenopril showed a superior effect over enalapril on the reduction of the peripheral systolic arterial pressure with reduction of ao-PWV (p = 0.004), as well as a reduction in peripheral Aix (p = 0.021) and central Aix (p = 0.021). Therefore, this study indicates that zofenopril has beneficial effects on the reduction of arterial stiffness compared to enalapril. It has potent clinical efficacy in AH treatment and further studies should compare its safety and long-term efficacy to other AH drugs that would aid clinicians in treating AH and other various cardiovascular diseases that have arterial stiffness as a common denominator.

10.
Environ Monit Assess ; 195(10): 1142, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665398

RESUMO

Graphitic carbon nitride (g-CN) has a number of valuable features that have been recognized during the studies related to its photocatalytic activity enhancement derived by visible light. Because of these characteristics, g-CN can be used as a detecting signal transducer with different transmission modalities. The latest up-to-date detection capabilities of modified g-CN nanoarchitectures are covered in this study. The structural features and synthetic methodologies have been discussed in a number of reports. Herein, employment of the g-CN as a promising probing modality for the recognition of different toxic heavy metals is the promising feature of the present study.


Assuntos
Poluentes Ambientais , Metais Pesados , Monitoramento Ambiental , Água
11.
Mol Biotechnol ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523019

RESUMO

The effects of diabetes can be divided into short, medium and long term and various human organ systems can be effected. The present study aimed to determine how much the duration of diabetes mellitus (DM) affect the reparative ability of the body, immune response and the development of DM complications. Interleukin 1-ß (IL-1ß) and Interleukin 6 (IL-6) were monitored as specific indicators of inflammatory reaction and C-reactive protein (CRP), leukocyte count (WBC) and sedimentation rate (ESR) as general markers of inflammatory reaction. Tumour necrosis factor α (TNF-α) and transforming growth factor ß1 (TGF-ß1) were observed as indicators of reparative ability and polyneuropathy. All interleukins were determined by ELISA and evaluated spectrophotometrically. Michigan Neuropathy Screening Instrument (MNSI) is performed for neuropathy examination. Patients with diabetes mellitus were divided into 3 groups, according to duration of diabetes mellitus. IL-6 levels correlated with clinical stage of diabetic polyneuropathy at p = 0.025 R = 0.402; with CRP at p = 0.0001, R = 0.784 as well as correlation of CRP and MNSI score (R = 0.500, p = 0.034) in a group of patients with DM lasting up to 10 years. The reparative ability of the body is reduced by physiological age and ages of DM duration. The immune response is weakened in DM additionally. The dual activity of cytokines IL-6 and TGF-ß1 is present in long-duration Diabetes Mellitus.

12.
Chemosphere ; 336: 139205, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315864

RESUMO

The issue of water contamination by heavy metal ions as highly persistent pollutants with harmful influence primarily on biological systems, even in trace levels, has become a great environmental concern globally. Therefore, there is a need for the use of highly sensitive techniques or preconcentration methods for the removal of heavy metal ions at trace levels. Thus, this research investigates a novel approach by examining the possibility of using pomegranate (Punica granatum) peel layered material for the simultaneous preconcentration of seven heavy metal ions; Cd(II), Co(II), Cr(III), Cu(II), Mn(II), Ni(II) and Pb(II) from aqueous solution and three river water samples. The quantification of the heavy metals was performed by the means of FAAS technique. The characterization of biomaterial was performed by SEM/EDS, FTIR analysis and pHpzc determination before and after the remediation process. The reusability study as well as the influence of interfering ions (Ca, K, Mg, Na and Zn) were evaluated. The conditions of preconcentration by the column method included the optimization of solution pH (5), flow rate (1.5 mL/min), a dose of biosorbent (200 mg), type of the eluent (1 mol/L HNO3), sample volume (100 mL) and sorbent fraction (<0.25 mm). The biosorbent capacity ranged from 4.45 to 57.70 µmol/g for the investigated heavy metals. The practical relevance of this study is further extended by novel data regarding adsorbent cost analysis (17.49 $/mol). The Punica granatum sorbent represents a highly effective and economical biosorbent for the preconcentration of heavy metal ions for possible application in industrial sectors.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Poluentes Ambientais/análise , Metais Pesados/análise , Água , Indicadores e Reagentes/análise , Água Doce , Poluentes Químicos da Água/análise , Adsorção , Concentração de Íons de Hidrogênio
13.
Mol Biotechnol ; 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347435

RESUMO

Nanotechnology and nanostructured materials for drug delivery and tissue engineering applications are relatively new field that is constantly advancing and expanding. The materials used are at the nanoscale level. Recently, great discoveries and applications have been made (Agents for use in chemotherapy, biological agents and immunotherapy agents) in the treatment of diseases in various areas. Tissue engineering is based on the regeneration and repair of damaged organs and tissues by developing biological substitutes that restore, maintain or improve the function of tissues and organs. Cells isolated from patients are used to seed 3D nanoparticles that can be synthetic or natural biomaterials. For the development of new tissue in tissue engineering, it is necessary to meet the conditions for connecting cells. This paper will present the ways of connecting cells and creating new tissues. Some recent discoveries and advances in the field of nanomedicine and the application of nanotechnology in drug delivery will be presented. Furthermore, the improvement of the effectiveness of new and old drugs based on the application of nanotechnology will be shown.

14.
Biotechnol Genet Eng Rev ; : 1-36, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37132363

RESUMO

Traditional therapeutic approaches in the treatment of cancer have many side effects and are often ineffective and non-specific, leading to the development of therapy-resistant tumour cells. Recently, numerous discoveries about stem cells have given a new outlook on their application in oncology. Stem cells are unique because of their biological attributes, including self-renewal, differentiation in different types of specialized cells and synthesis of molecules that interplay with tumour niche. They are already used as an effective therapeutic option for haematological malignancies, such as multiple myeloma and leukaemia. The main goal of this study is to investigate the possible applications of different types of stem cells in cancer treatment and to summarize novel advances, as well as the limitations of their application in cancer treatment. Research and clinical trials that are underway revealed and confirmed the enormous potential of regenerative medicine in the treatment of cancer, especially when combined with different nanomaterials. Nanoengineering of stem cells has been the focus of novel studies in the area of regenerative medicine, such as the production of nanoshells and nanocarriers that enhance the transport and uptake of stem cells in their targeted tumour niche and enable the effective monitoring of stem cell effects on tumour cells. Although nanotechnology has a lot of limitations, it provides new opportunities for the development of effective and innovative stem cell therapies.

15.
Environ Res ; 231(Pt 2): 116210, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217132

RESUMO

Soil erosion is a serious and complex environmental problem worldwide, especially in the centre west of Tunisia. Whereas the construction of hill reservoirs is part of the soil and water conservation strategy, many of these have a siltation problem. Dhkekira is one of the smallest watersheds in central Tunisia whose most lithological formation consists of materials that are quite susceptible to water erosion. Due to the lack of low-scale lithological data, digital IR aerial photos with 2 m spatial resolution were considered. A semi-automatic classification of aerial photos, based on the image's textural indices is developed. The lithologic map extracted from aerial photos was used as input for ANSWERS-2000 water erosion model. Results obtained indicate first, with the semi-automatic classification of the mean and standard deviation of the thumbnail histograms that image output could help to give an idea about the existence of some surface lithological formation. The model applied to Dhkekira watershed showed that the spatial difference in water erosion was not caused only by land cover and slope, but also by lithological formation. The percentage of each lithological formation in sediment yield at the Dhkekira hill reservoir was estimated to be 69% sediment yield from Pleistocene and 19.7% from Lutetian-Priabonian.


Assuntos
Recuperação e Remediação Ambiental , Erosão do Solo , Conservação dos Recursos Naturais/métodos , Água , Monitoramento Ambiental/métodos , Solo
16.
Chem Asian J ; 18(13): e202300196, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37171867

RESUMO

The term "covalent organic framework" (COF) refers to a class of porous organic polymeric materials made from organic building blocks that have been covalently bonded. The preplanned and predetermined bonding of the monomer linkers allow them to demonstrate directional flexibility in two- or three-dimensional spaces. COFs are modern materials, and the discovery of new synthesis and linking techniques has made it possible to prepare them with a variety of favorable features and use them in a range of applications. Additionally, they can be post-synthetically altered or transformed into other materials of particular interest to produce compounds with enhanced chemical and physical properties. Because of its tunability in different chemical and physical states, post-synthetic modifications, high stability, functionality, high porosity and ordered geometry, COFs are regarded as one of the most promising materials for catalysis and environmental applications. This study highlights the basic advancements in establishing the stable COFs structures and various post-synthetic modification approaches. Further, the photocatalytic applications, such as organic transformations, degradation of emerging pollutants and removal of heavy metals, production of hydrogen and Conversion of carbon dioxide (CO2 ) to useful products have also been presented. Finally, the future research directions and probable outcomes have also been summarized, by focusing their promises for specialists in a variety of research fields.

17.
J Nutr Biochem ; 118: 109368, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100304

RESUMO

The human gut is a host for trillions of microorganisms, divided into more than 3,000 heterogeneous species that is called the gut microbiota. The gut microbiota composition can be altered by many different endogenous and exogenous factors, especially diet and nutrition. A diet rich in phytoestrogens, a variable group of chemical compounds similar to 17-ß-estradiol (E2), the essential female steroid sex hormone is potent to change the composition of gut microbiota. However, the metabolism of phytoestrogens also highly depends on the action of enzymes produced by gut microbiota. Novel studies have shown that phytoestrogens could play an important role in the treatment of different types of cancers, such as breast cancer in women, due to their potential to decrease estrogen levels. This review aims to summarize recent findings about the lively dialogue between phytoestrogens and gut microbiota and to address their possible future application, especially in treating patients with diagnosed breast cancer. A potential therapeutic approach for the prevention and improving outcomes in breast cancer patients could be based on targeted probiotic supplementation with the use of soy phytoestrogens. A positive effect of probiotics on the outcome and survival of patients with breast cancer has been established. However, more in vivo scientific studies are needed to pave the way for the use of probiotics and phytoestrogens in the clinical practice of breast cancer treatment.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Isoflavonas , Feminino , Humanos , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Fitoestrógenos/metabolismo , Estrogênios , Neoplasias da Mama/tratamento farmacológico , Biotransformação , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico
18.
Life Sci ; 319: 121531, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858313

RESUMO

SARS-CoV-2 virus has attracted a lot of attention globally due to the autoimmune and inflammatory processes that were observed during the development of Covid-19 disease. Excessive activation of immune response and triggering of autoantibodies synthesis as well as an excessive synthesis of inflammatory cytokines and the onset of cytokine storm has a vital role in the disease outcome and the occurring autoimmune complications. This scenario is reminiscent of infiltration of lymphocytes and monocytes in specific organs and the increased production of autoantibodies and chemoattractants noted in other inflammatory and autoimmune diseases. The main goal of this study is to investigate the complex inflammatory processes that occur in Covid-19 disease and to find similarities with other inflammatory diseases such as multiple sclerosis (MS), acute respiratory distress syndrome (ARDS), rheumatoid arthritis (RA) and Kawasaki syndrome to advance existing diagnostic and therapeutic protocols. The therapy with Interferon-gamma (IFN-γ) and the use of S1P receptor modulators showed promising results. However, there are many unknowns about these mechanisms and possible novel therapies. Therefore, the inflammation and autoimmunity triggered by Covid-19 should be further investigated to improve existing diagnostic procedures and therapeutic protocols for Covid-19.


Assuntos
Doenças Autoimunes , COVID-19 , Humanos , COVID-19/complicações , SARS-CoV-2 , Citocinas , Inflamação , Doenças Autoimunes/complicações , Doenças Autoimunes/tratamento farmacológico , Autoanticorpos
19.
Ind Eng Chem Res ; 62(11): 4494-4502, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975768

RESUMO

Inorganic perovskite materials are possible candidates for conversion of solar energy to electrical energy due to their high absorption coefficient. Perovskite solar cells (PSCs) introduced a new type of device structure that has attention due to better efficiencies and interest in PSCs that has been increasing in recent years. Halide perovskite materials such as CsPbIBr2 show remarkable optical and structural performance with their better physical properties. Perovskite solar cells are a possible candidate to replace conventional silicon solar panels. In the present study, CsPbIBr2 perovskite materials' thin films were prepared for light-absorbing application. Five thin films were deposited on the glass substrates by subsequent spin-coating of CsI and PbBr2 solutions, subsequently annealed at different temperature values (as-deposited, 100, 150, 200 and 250 °C) to get CsPbIBr2 thin films with a better crystal structure. Structural characterizations were made by using X-ray diffraction. CsPbIBr2 thin films were found to be polycrystalline in nature. With increasing annealing temperature, the crystallinity was improved, and the crystalline size was increased. Optical properties were studied by using transmission data, and by increasing annealing temperature, a small variation in optical band gap energy was observed in the range of 1.70-1.83 eV. The conductivity of CsPbIBr2 thin films was determined by a hot probe technique and was found to have little fluctuating response toward p-type conductivity, which may be due to intrinsic defects or presence of CsI phase, but a stable intrinsic nature was observed. The obtained physical properties of CsPbIBr2 thin films suggest them as a suitable candidate as a light-harvesting layer. These thin films could be an especially good partner with Si or other lower band gap energy materials in tandem solar cells (TSC). CsPbIBr2 material will harvest light having energy of ∼1.7 eV or higher, while a lower energy part of the solar spectrum will be absorbed in the partner part of the TSC.

20.
Ind Eng Chem Res ; 62(11): 4540-4553, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975772

RESUMO

In recent decades, food-packaging markets have attracted researchers' interest in many ways because such industries can directly affect human health. In this framework, the present study emphasizes the interesting and smart properties provided by new nanocomposites based on conducting polymers (CPs), silver nanoparticles (AgNPs), and cellulose fibers (CFs) and their possible applications as active food packaging. Polyaniline and poly(3,4-ethylenedioxythiophene) containing AgNPs were elaborated on via a simple one-step in situ chemical oxidative polymerization on CFs. Spectroscopic and microscopic characterization allowed a full discussion of the morphology and chemical structure of the nanocomposites and confirmed the successful polymerization of the monomer as well as the incorporation of AgNPs into the CP-based formulation. This study aims to demonstrate that it is possible to produce a highly efficient package with enhanced protective properties. Thus, the synthesized nanocomposites were tested as volatile organic compounds, sensors, and antibacterial and antioxidant agents. It is shown that the elaborated materials can, on the one hand, inhibit the development of biofilms and decrease the oxidation reaction rate of foodstuffs and, on the other hand, detect toxic gases generated by spoiled food. The presented method has unlocked massive opportunities for using such formulations as an interesting alternative for classical food containers. The smart and novel properties offered by the synthesized composites can be operated for future industrial applications to prevent any degradation of the packaged products by offering optimum protection and creating an atmosphere that can extend the shelf life of foodstuffs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...