Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(7): 1604-1615, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38980123

RESUMO

Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.


Assuntos
Proteólise , Humanos , Tirosina Quinase da Agamaglobulinemia/metabolismo , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Complexo de Endopeptidases do Proteassoma/metabolismo
2.
ACS Chem Biol ; 18(2): 331-339, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36656921

RESUMO

Molecular glues (MGs) are monovalent small molecules that induce an interaction between proteins (native or non-native partners) by altering the protein-protein interaction (PPI) interface toward a higher-affinity state. Enhancing the PPI between a protein and E3 ubiquitin ligase can lead to degradation of the partnering protein. Over the past decade, retrospective studies of clinical drugs identified that immunomodulatory drugs (e.g., thalidomide and analogues) and indisulam exhibit a molecular glue effect by driving the interaction between non-native substrates to CRBN and DCAF15 ligases, respectively. Ensuing reports of phenotypic screens focused on MG discovery have suggested that these molecules may be more common than initially anticipated. However, prospective discovery of MGs remains challenging. Thus, expanding the repertoire of MGs will enhance our understanding of principles for prospective design. Herein, we report the results of a CRISPR/Cas9 knockout screen of over 1000 ligases and ubiquitin proteasome system components in a BRD4 degradation assay with a JQ1-based monovalent degrader, compound 1a. We identified DCAF16, a substrate recognition component of the Cul4 ligase complex, as essential for compound activity, and we demonstrate that compound 1a drives the interaction between DCAF16 and BRD2/4 to promote target degradation. Taken together, our data suggest that compound 1a functions as an MG degrader between BRD2/4 and DCAF16 and provides a foundation for further mechanistic dissection to advance prospective MG discovery.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Proteólise , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estudos Retrospectivos , Fatores de Transcrição/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Pharmacol Ther ; 210: 107525, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32201313

RESUMO

Protein folding in the endoplasmic reticulum is an oxidative process that relies on protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase 1 (ERO1). Over 30% of proteins require the chaperone PDI to promote disulfide bond formation. PDI oxidizes cysteines in nascent polypeptides to form disulfide bonds and can also reduce and isomerize disulfide bonds. ERO1 recycles reduced PDI family member PDIA1 using a FAD cofactor to transfer electrons to oxygen. ERO1 dysfunction critically affects several diseases states. Both ERO1 and PDIA1 are overexpressed in cancers and implicated in diabetes and neurodegenerative diseases. Cancer-associated ERO1 promotes cell migration and invasion. Furthermore, the ERO1-PDIA1 interaction is critical for epithelial-to-mesenchymal transition. Co-expression analysis of ERO1A gene expression in cancer patients demonstrated that ERO1A is significantly upregulated in lung adenocarcinoma (LUAD), glioblastoma and low-grade glioma (GBMLGG), pancreatic ductal adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP) cancers. ERO1Α knockdown gene signature correlates with knockdown of cancer signaling proteins including IGF1R, supporting the search for novel, selective ERO1 inhibitors for the treatment of cancer. In this review, we explore the functions of ERO1 and PDI to support inhibition of this interaction in cancer and other diseases.


Assuntos
Retículo Endoplasmático/enzimologia , Glicoproteínas de Membrana/metabolismo , Neoplasias/enzimologia , Oxirredutases/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/uso terapêutico , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Inibidores Enzimáticos/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Oxirredução , Estresse Oxidativo , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Pró-Colágeno-Prolina Dioxigenase/genética , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína , Mapas de Interação de Proteínas , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...