Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(51): 18681-18687, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29185334

RESUMO

Ion-ion interactions in supercapacitor (SC) electrolytes are considered to have significant influence over the charging process and therefore the overall performance of the SC system. Current strategies used to weaken ionic interactions can enhance the power of SCs, but consequently, the energy density will decrease due to the increased distance between adjacent electrolyte ions at the electrode surface. Herein, we report on the simultaneous enhancement of the power and energy densities of a SC using an ionic mixture electrolyte with different types of ionic interactions. Two types of cations with stronger ionic interactions can be packed in a denser arrangement in mesopores to increase the capacitance, whereas only cations with weaker ionic interactions are allowed to enter micropores without sacrificing the power density. This unique selective charging behavior in different confined porous structure was investigated by solid-state nuclear magnetic resonance experiments and further confirmed theoretically by both density functional theory and molecular dynamics simulations. Our results offer a distinct insight into pairing ionic mixture electrolytes with materials with confined porous characteristics and further propose that it is possible to control the charging process resulting in comprehensive enhancements in SC performance.

2.
ChemSusChem ; 9(21): 3093-3101, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27754604

RESUMO

The specific energy of a supercapacitor (SC) with an ionic liquid (IL)-based electrolyte is larger than that using an aqueous electrolyte owing to the wide operating voltage window provided by the IL. However, the wide-scale application of high-energy SCs using ILs is limited owing to a serious reduction of the energy with increasing power. The introduction of macropores to the porous material can mitigate the reduction in the gravimetric capacitance at high rates, but this lowers the volumetric capacitance. Synthetic polymers can be used to obtain macroporous frameworks with high apparent densities, but the preservation of the frameworks during activation is challenging. To simultaneously achieve high gravimetric capacitance, volumetric capacitance, and rate capability, a systematic strategy was used to synthesize a densely knitted carbon framework with a hierarchical pore structure by using a polymer. The energy of the SC using the hierarchically porous carbon was 160 Wh kg-1 and 85 Wh L-1 on an active material base at a power of 100 W kg-1 in an IL electrolyte, and 60 % of the energy was still retained at a power larger than 5000 W kg-1 . To illustrate, a full-packaged SC with the material could store/release energy comparable to a Ni-metal hydride battery (gravimetrically) and one order of magnitude higher than a commercial carbon-based SC (volumetrically), within one minute.


Assuntos
Capacitância Elétrica , Fontes de Energia Elétrica , Líquidos Iônicos/química , Eletrólitos/química , Polímeros/química , Porosidade
3.
ChemSusChem ; 8(8): 1368-80, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25760685

RESUMO

Huge irreversible capacity loss prevents the successful use of metal oxide anodes in Li-ion full cells. Here, we focus on the critical prelithiation step and demonstrate the challenge of electrolyte decomposition on a pristine anode in a full cell. Both an electrochemical activation process (54 h) with Li metal and a new electrolytic process (75 min) without Li metal were used to preform complete solid electrolyte interphase (SEI) layers on 3 D binder-free MnOy -based anodes. The preformed SEI layers mitigated the electrolyte decomposition effectively and widened the working voltage for the MnOy /LiMn2 O4 full cell, which resulted in a big boost of the specific energy to 300 and 200 W h kgcathode (-1) , largely improved cycling stability, and much higher specific power (4200 W h kgtotal (-1) ) compared to conventional Li-ion batteries. Detailed characterization, such as cyclic voltammetry, scanning transmission electron microscopy, and FTIR spectroscopy, gives mechanistic insight into SEI preformation. This work provides guidance for the design of anode SEI layers and enables the application of oxides for Li-ion battery full cells.


Assuntos
Fontes de Energia Elétrica , Compostos de Manganês/química , Óxidos/química , Eletroquímica , Eletrodos , Lítio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...