Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Macro Lett ; 12(7): 901-907, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37358349

RESUMO

The diffusion of two aromatic dyes with nearly identical sizes was measured in ethylene vitrimers with precise linker lengths and borate ester cross-links using fluorescence recovery after photobleaching (FRAP). One dye possessed a reactive hydroxyl group, while the second was inert. The reaction of the hydroxyl group with the network is slow relative to the hopping times of the dye, resulting in a large slowdown by a factor of 50 for a reactive probe molecule. A kinetic model was fit to the fluorescence intensity data to determine rate constants for the reversible reaction of the dye from the network, which confirms the role of slow reaction kinetics. A second network cross-linker was also investigated with a substituted boronic ester showing ∼10,000 times faster exchange kinetics. In this system, the two dyes show the same diffusion coefficient, as the reaction is no longer the rate-limiting step. The role of dense meshes on small and large dyes is also discussed in the context of the existing theories. These results highlight the potential of dynamic networks to control penetrant transport through synergistic effects of the mesh size, dynamic bond kinetics, and penetrant-network interactions.

2.
ACS Cent Sci ; 9(3): 508-518, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968535

RESUMO

The diffusion of molecules ("penetrants") of variable size, shape, and chemistry through dense cross-linked polymer networks is a fundamental scientific problem broadly relevant in materials, polymer, physical, and biological chemistry. Relevant applications include separation membranes, barrier materials, drug delivery, and nanofiltration. A major open question is the relationship between transport, thermodynamic state, and penetrant and polymer chemical structure. Here we combine experiment, simulation, and theory to unravel these competing effects on penetrant transport in rubbery and supercooled polymer permanent networks over a wide range of cross-link densities, size ratios, and temperatures. The crucial importance of the coupling of local penetrant hopping to polymer structural relaxation and the secondary importance of mesh confinement effects are established. Network cross-links strongly slow down nm-scale polymer relaxation, which greatly retards the activated penetrant diffusion. The demonstrated good agreement between experiment, simulation, and theory provides strong support for the size ratio (penetrant diameter to the polymer Kuhn length) as a key variable and the usefulness of coarse-grained simulation and theoretical models that average over Angstrom scale structure. The developed theory provides an understanding of the physical processes underlying the behaviors observed in experiment and simulation and suggests new strategies for enhancing selective polymer membrane design.

3.
Proc Natl Acad Sci U S A ; 119(41): e2210094119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36194629

RESUMO

Understanding the activated transport of penetrant or tracer atoms and molecules in condensed phases is a challenging problem in chemistry, materials science, physics, and biophysics. Many angstrom- and nanometer-scale features enter due to the highly variable shape, size, interaction, and conformational flexibility of the penetrant and matrix species, leading to a dramatic diversity of penetrant dynamics. Based on a minimalist model of a spherical penetrant in equilibrated dense matrices of hard spheres, a recent microscopic theory that relates hopping transport to local structure has predicted a novel correlation between penetrant diffusivity and the matrix thermodynamic dimensionless compressibility, S0(T) (which also quantifies the amplitude of long wavelength density fluctuations), as a consequence of a fundamental statistical mechanical relationship between structure and thermodynamics. Moreover, the penetrant activation barrier is predicted to have a factorized/multiplicative form, scaling as the product of an inverse power law of S0(T) and a linear/logarithmic function of the penetrant-to-matrix size ratio. This implies an enormous reduction in chemical complexity that is verified based solely on experimental data for diverse classes of chemically complex penetrants dissolved in molecular and polymeric liquids over a wide range of temperatures down to the kinetic glass transition. The predicted corollary that the penetrant diffusion constant decreases exponentially with inverse temperature raised to an exponent determined solely by how S0(T) decreases with cooling is also verified experimentally. Our findings are relevant to fundamental questions in glassy dynamics, self-averaging of angstrom-scale chemical features, and applications such as membrane separations, barrier coatings, drug delivery, and self-healing.


Assuntos
Vidro , Física , Difusão , Vidro/química , Transição de Fase , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...