Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(12): 3302-3308, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38747517

RESUMO

The contamination of environmental sites due to the presence of persistent species represents an important issue to be tackled. In particular, the presence of high levels of metals in soil and surface water is more frequent. One of the metals that sometimes exceeds the permissible limit set by regulatory authorities is copper. For instance, copper-based fungicides are widely used in viticulture. However, copper ions remain in soil and can enter the food chain, posing threats to human health and environmental safety. Although the rapid detection of copper ions using portable sensors is effective in enhancing early warning, it sometimes solves only half of the problem as remediation is not considered. In this paper, we present a novel integrated/portable approach that merges the remediation and sensing of metals by proposing a remediate-and-sense concept. In order to realize this concept, alginate beads were coupled with printed electrochemical strips for on-site copper detection. Within the same architecture, alginate beads were used to remove copper ions from the soil, and printed electrochemical strips were used to evaluate the efficacy of remediation at the point of need. The concept was applied towards soil containing copper ions at the parts per billion level; with few alginate beads and in the absence of additional species, copper ions were quantitatively removed from the matrix; and 3D printing allowed us to combine the printed strips and spheres within a unique tool. The architecture was optimized and the results were compared to inductively coupled plasma-mass spectrometry (ICP-MS) measurements with a recovery percentage of 90%-110%. It should be noted that this novel portable approach may be applied to other pollutants, opening new possibilities for integrated remediation and sensing.

2.
J Immunol ; 212(2): 188-198, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38166251

RESUMO

The use of a patient's own immune or tumor cells, manipulated ex vivo, enables Ag- or patient-specific immunotherapy. Despite some clinical successes, there remain significant barriers to efficacy, broad patient population applicability, and safety. Immunotherapies that target specific tumor Ags, such as chimeric Ag receptor T cells and some dendritic cell vaccines, can mount robust immune responses against immunodominant Ags, but evolving tumor heterogeneity and antigenic downregulation can drive resistance. In contrast, whole tumor cell vaccines and tumor lysate-loaded dendritic cell vaccines target the patient's unique tumor antigenic repertoire without prior neoantigen selection; however, efficacy can be weak when lower-affinity clones dominate the T cell pool. Chimeric Ag receptor T cell and tumor-infiltrating lymphocyte therapies additionally face challenges related to genetic modification, T cell exhaustion, and immunotoxicity. In this review, we highlight some engineering approaches and opportunities to these challenges among four classes of autologous cell therapies.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas , Humanos , Neoplasias/terapia , Antígenos de Neoplasias , Linfócitos T , Imunoterapia , Células Dendríticas , Imunoterapia Adotiva
3.
Front Plant Sci ; 14: 1304627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126011

RESUMO

Microbial-based biostimulants, functioning as biotic and abiotic stress protectants and growth enhancers, are becoming increasingly important in agriculture also in the context of climate change. The search for new products that can help reduce chemical inputs under a variety of field conditions is the new challenge. In this study, we tested whether the combination of two microbial growth enhancers with complementary modes of action, Azotobacter chroococcum 76A and Trichoderma afroharzianum T22, could facilitate tomato adaptation to a 30% reduction of optimal water and nitrogen requirements. The microbial inoculum increased tomato yield (+48.5%) under optimal water and nutrient conditions. In addition, the microbial application improved leaf water potential under stress conditions (+9.5%), decreased the overall leaf temperature (-4.6%), and increased shoot fresh weight (+15%), indicating that this consortium could act as a positive regulator of plant water relations under limited water and nitrogen availability. A significant increase in microbial populations in the rhizosphere with applications of A. chroococcum 76A and T. afroharzianum T22 under stress conditions, suggested that these inoculants could enhance soil microbial abundance, including the abundance of native beneficial microorganisms. Sampling time, limited water and nitrogen regimes and microbial inoculations all affected bacterial and fungal populations in the rhizospheric soil. Overall, these results indicated that the selected microbial consortium could function as plant growth enhancer and stress protectant, possibly by triggering adaptation mechanisms via functional changes in the soil microbial diversity and relative abundance.

4.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762679

RESUMO

In order to supply adequate iron during pregnancy, the levels of the iron regulatory hormone hepcidin in the maternal circulation are suppressed, thereby increasing dietary iron absorption and storage iron release. Whether this decrease in maternal hepcidin is caused by changes in factors known to regulate hepcidin expression, or by other unidentified pregnancy factors, is not known. To investigate this, we examined iron parameters during pregnancy in mice. We observed that hepatic iron stores and transferrin saturation, both established regulators of hepcidin production, were decreased in mid and late pregnancy in normal and iron loaded dams, indicating an increase in iron utilization. This can be explained by a significant increase in maternal erythropoiesis, a known suppressor of hepcidin production, by mid-pregnancy, as indicated by an elevation in circulating erythropoietin and an increase in spleen size and splenic iron uptake. Iron utilization increased further in late pregnancy due to elevated fetal iron demand. By increasing maternal iron levels in late gestation, we were able to stimulate the expression of the gene encoding hepcidin, suggesting that the iron status of the mother is the predominant factor influencing hepcidin levels during pregnancy. Our data indicate that pregnancy-induced hepcidin suppression likely occurs because of reductions in maternal iron reserves due to increased iron requirements, which predominantly reflect stimulated erythropoiesis in mid-gestation and increased fetal iron requirements in late gestation, and that there is no need to invoke other factors, including novel pregnancy factor(s), to explain these changes.


Assuntos
Hepcidinas , Deficiências de Ferro , Feminino , Gravidez , Camundongos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Ferro da Dieta , Feto/metabolismo , Eritropoese
5.
PLoS One ; 18(8): e0289674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540658

RESUMO

PURPOSE: Heat-induced destruction of cancer cells via microwave ablation (MWA) is emerging as a viable treatment of primary and metastatic liver cancer. Prediction of the impacted zone where cell death occurs, especially in the presence of vasculature, is challenging but may be achieved via biophysical modeling. To advance and characterize thermal MWA for focal cancer treatment, an in vivo method and experimental dataset were created for assessment of biophysical models designed to dynamically predict ablation zone parameters, given the delivery device, power, location, and proximity to vessels. MATERIALS AND METHODS: MWA zone size, shape, and temperature were characterized and monitored in the absence of perfusion in ex vivo liver and a tissue-mimicking thermochromic phantom (TMTCP) at two power settings. Temperature was monitored over time using implanted thermocouples with their locations defined by CT. TMTCPs were used to identify the location of the ablation zone relative to the probe. In 6 swine, contrast-enhanced CTs were additionally acquired to visualize vasculature and absence of perfusion along with corresponding post-mortem gross pathology. RESULTS: Bench studies demonstrated average ablation zone sizes of 4.13±1.56cm2 and 8.51±3.92cm2, solidity of 0.96±0.06 and 0.99±0.01, ablations centered 3.75cm and 3.5cm proximal to the probe tip, and temperatures of 50 ºC at 14.5±13.4s and 2.5±2.1s for 40W and 90W ablations, respectively. In vivo imaging showed average volumes of 9.8±4.8cm3 and 33.2±28.4cm3 and 3D solidity of 0.87±0.02 and 0.75±0.15, and gross pathology showed a hemorrhagic halo area of 3.1±1.2cm2 and 9.1±3.0cm2 for 40W and 90W ablations, respectfully. Temperatures reached 50ºC at 19.5±9.2s and 13.0±8.3s for 40W and 90W ablations, respectively. CONCLUSION: MWA results are challenging to predict and are more variable than manufacturer-provided and bench predictions due to vascular stasis, heat-induced tissue changes, and probe operating conditions. Accurate prediction of MWA zones and temperature in vivo requires comprehensive thermal validation sets.


Assuntos
Fígado , Animais , Suínos , Fígado/patologia , Fígado/cirurgia , Micro-Ondas , Temperatura , Técnicas de Ablação , Ablação por Radiofrequência
8.
Proc Natl Acad Sci U S A ; 120(10): e2216922120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848561

RESUMO

Plants generate energy flows through natural food webs, driven by competition for resources among organisms, which are part of a complex network of multitrophic interactions. Here, we demonstrate that the interaction between tomato plants and a phytophagous insect is driven by a hidden interplay between their respective microbiotas. Tomato plants colonized by the soil fungus Trichoderma afroharzianum, a beneficial microorganism widely used in agriculture as a biocontrol agent, negatively affects the development and survival of the lepidopteran pest Spodoptera littoralis by altering the larval gut microbiota and its nutritional support to the host. Indeed, experiments aimed to restore the functional microbial community in the gut allow a complete rescue. Our results shed light on a novel role played by a soil microorganism in the modulation of plant-insect interaction, setting the stage for a more comprehensive analysis of the impact that biocontrol agents may have on ecological sustainability of agricultural systems.


Assuntos
Microbioma Gastrointestinal , Microbiota , Solanum lycopersicum , Animais , Solo , Insetos , Agricultura
9.
Front Immunol ; 14: 1085547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817432

RESUMO

Chimeric antigen receptor (CAR) T cell therapy in glioblastoma faces many challenges including insufficient CAR T cell abundance and antigen-negative tumor cells evading targeting. Unfortunately, preclinical studies evaluating CAR T cells in glioblastoma focus on tumor models that express a single antigen, use immunocompromised animals, and/or pre-treat with lymphodepleting agents. While lymphodepletion enhances CAR T cell efficacy, it diminishes the endogenous immune system that has the potential for tumor eradication. Here, we engineered CAR T cells to express IL7 and/or Flt3L in 50% EGFRvIII-positive and -negative orthotopic tumors pre-conditioned with non-lymphodepleting irradiation. IL7 and IL7 Flt3L CAR T cells increased intratumoral CAR T cell abundance seven days after treatment. IL7 co-expression with Flt3L modestly increased conventional dendritic cells as well as the CD103+XCR1+ population known to have migratory and antigen cross-presenting capabilities. Treatment with IL7 or IL7 Flt3L CAR T cells improved overall survival to 67% and 50%, respectively, compared to 9% survival with conventional or Flt3L CAR T cells. We concluded that CAR T cells modified to express IL7 enhanced CAR T cell abundance and improved overall survival in EGFRvIII heterogeneous tumors pre-conditioned with non-lymphodepleting irradiation. Potentially IL7 or IL7 Flt3L CAR T cells can provide new opportunities to combine CAR T cells with other immunotherapies for the treatment of glioblastoma.


Assuntos
Glioblastoma , Glioma , Animais , Camundongos , Receptores ErbB , Glioblastoma/terapia , Interleucina-7 , Linfócitos T
10.
Biometals ; 36(2): 263-281, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35167013

RESUMO

The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.


Assuntos
Ceruloplasmina , Cobre , Animais , Camundongos , Cobre/metabolismo , Ceruloplasmina/metabolismo , Camundongos Knockout , Oxirredução , Biologia , Mamíferos/metabolismo
11.
Biosens Bioelectron ; 222: 115005, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527829

RESUMO

The devastating effects of global climate change on crop production and exponential population growth pose a major challenge to agricultural yields. To cope with this problem, crop performance monitoring is becoming increasingly necessary. In this scenario, the use of sensors and biosensors capable of detecting changes in plant fitness and predicting the evolution of their morphology and physiology has proven to be a useful strategy to increase crop yields. Flexible sensors and nanomaterials have inspired the emerging fields of wearable and on-plant portable devices that provide continuous and accurate long-term sensing of morphological, physiological, biochemical, and environmental parameters. This review provides an overview of novel plant sensing technologies by discussing wearable and integrated devices proposed for engineering plant and monitoring its morphological traits and physiological processes, as well as plant-environment interactions. For each application scenario, the state-of-the-art sensing solutions are grouped according to the plant organ on which they have been installed highlighting their main technological advantages and features. Finally, future opportunities, challenges and perspectives are discussed. We anticipate that the application of this technology in agriculture will provide more accurate measurements for farmers and plant scientists with the ability to track crop performance in real time. All of this information will be essential to enable rapid optimization of plants development through tailored treatments that improve overall plant health even under stressful conditions, with the ultimate goal of increasing crop productivity in a more sustainable manner.


Assuntos
Técnicas Biossensoriais , Agricultura
12.
Nat Rev Microbiol ; 21(5): 312-326, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36414835

RESUMO

Trichoderma is a cosmopolitan and opportunistic ascomycete fungal genus including species that are of interest to agriculture as direct biological control agents of phytopathogens. Trichoderma utilizes direct antagonism and competition, particularly in the rhizosphere, where it modulates the composition of and interactions with other microorganisms. In its colonization of plants, on the roots or as an endophyte, Trichoderma has evolved the capacity to communicate with the plant and produce numerous multifaceted benefits to its host. The intricacy of this plant-microorganism association has stimulated a marked interest in research on Trichoderma, ranging from its capacity as a plant growth promoter to its ability to prime local and systemic defence responses against biotic and abiotic stresses and to activate transcriptional memory affecting plant responses to future stresses. This Review discusses the ecophysiology and diversity of Trichoderma and the complexity of its relationships in the agroecosystem, highlighting its potential as a direct and indirect biological control agent, biostimulant and biofertilizer, which are useful multipurpose properties for agricultural applications. We also highlight how the present legislative framework might accommodate the demonstrated evidence of Trichoderma proficiency as a plant-beneficial microorganism contributing towards eco-sustainable agriculture.


Assuntos
Trichoderma , Trichoderma/genética , Plantas/microbiologia , Agricultura , Desenvolvimento Vegetal , Regiões Promotoras Genéticas , Raízes de Plantas/microbiologia
13.
Foods ; 11(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36359928

RESUMO

Eugenol and linalool are often the most abundant volatile compounds found in basil (Ocimum basilicum L., Lamiaceae) leaves, and they are interesting for the aroma they provide and for their numerous beneficial bioactivities. Their determination is thus needed for several purposes. In the present study, to avoid the previous isolation of essential oil, the direct solvent extraction is proposed coupled with a transmethylation to convert acyl lipids into fatty acids methyl esters (FAMEs), thus assessing the possible simultaneous analysis of eugenol and linalool with FAMEs by gas chromatography coupled to flame ionization detector (GC-FID). The method has been validated and applied to ten basil leaves samples in which eugenol and linalool were found in mean concentrations of 2.80 ± 0.15 and 1.01 ± 0.04 g kg-1 (dry weight), respectively. FAMEs composition was dominated by linolenic acid (52.1-56.1%) followed by palmitic acid (19.3-22.4%) and linoleic acid (9.6-11.3%). The ratio of n6-polyunsaturated fatty acids (PUFAs)/n3-PUFAs was in the range of 0.17-0.20 in the investigated samples. The proposed method exploits a rapid procedure requiring 40 min, making use of a small amount of solvent and allowing the simultaneous determination of molecules contributing to assess the quality of this worldwide appreciated herb.

14.
Sci Transl Med ; 14(666): eabm8351, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223450

RESUMO

The COVID-19 pandemic demonstrated the need for inexpensive, easy-to-use, rapidly mass-produced resuscitation devices that could be quickly distributed in areas of critical need. In-line miniature ventilators based on principles of fluidics ventilate patients by automatically oscillating between forced inspiration and assisted expiration as airway pressure changes, requiring only a continuous supply of pressurized oxygen. Here, we designed three miniature ventilator models to operate in specific pressure ranges along a continuum of clinical lung injury (mild, moderate, and severe injury). Three-dimensional (3D)-printed prototype devices evaluated in a lung simulator generated airway pressures, tidal volumes, and minute ventilation within the targeted range for the state of lung disease each was designed to support. In testing in domestic swine before and after induction of pulmonary injury, the ventilators for mild and moderate injury met the design criteria when matched with the appropriate degree of lung injury. Although the ventilator for severe injury provided the specified design pressures, respiratory rate was elevated with reduced minute ventilation, a result of lung compliance below design parameters. Respiratory rate reflected how well each ventilator matched the injury state of the lungs and could guide selection of ventilator models in clinical use. This simple device could help mitigate shortages of conventional ventilators during pandemics and other disasters requiring rapid access to advanced airway management, or in transport applications for hands-free ventilation.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Animais , Homeostase , Humanos , Oxigênio , Pandemias , Impressão Tridimensional , Taxa Respiratória , Suínos , Ventiladores Mecânicos
15.
Plants (Basel) ; 11(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297802

RESUMO

The cultivation of different species of Eucalyptus has recently expanded in Liguria (Italy) due to the growing demand of the North European floricultural market. Eucalyptus tree branches are cut and selected for their quality, resulting in large amounts of waste biomass to be disposed of. The aim of our study was to evaluate the phytotoxic and antimicrobial activities of essential oils (EOs) from pruning wastes of E. cinerea (EC) and E. nicholii (EN), for potential applications in agriculture. Phytochemical analyses showed eucalyptol (1,8-cineole) as the major component in both EOs, but the EO yield of EN was higher than that of EC, in agreement with a significantly higher oil gland density on EN leaves. EOs from both species showed phytotoxicity on both weeds tested, but no significant inhibition on horticultural crop seed germination, except for Raphanus sativus. The EO from EC showed the strongest antibacterial activity, while the EO from EN showed the strongest antifungal activity. Concluding, EOs from Eucalyptus pruning may be used as possible alternatives to synthetic herbicides and pesticides, acting as antimicrobial and antifungal agents, thus representing a safe strategy for crop management programs.

16.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745082

RESUMO

The contamination of agricultural products with mycotoxins causes risks to animal and human health and severe economic losses. Mycotoxicoses can be reduced by preventing fungal infection using chemical and biological approaches. The chemical strategies can release toxic molecules; therefore, strategies for biological control are being evaluated, such as using nontoxic fungi and their metabolites. This work evaluated the effect of exoenzymes produced by the beneficial fungus Trichoderma afroharzianum strain T22 in degrading Aflatoxin B1 (AFB1) and Ochratoxin A (OTA). The ability of Trichoderma to produce hydrolases was stimulated by using different inducing substrates. The highest AFB1 and OTA degradation activity was obtained using a medium containing lyophilized mushrooms and crude fiber. The T. afroharzianum T22's ability to reduce mycotoxins may be attributed to peroxidase enzymes. This study showed that T.afroharzianum strain T22 or its peroxidase supplementation could represent a sustainable strategy for the degradation of AFB1 and OTA in feed and food products.


Assuntos
Micotoxinas , Ocratoxinas , Trichoderma , Aflatoxina B1 , Animais , Contaminação de Alimentos/análise , Micotoxinas/análise , Ocratoxinas/análise , Peroxidases , Trichoderma/metabolismo
17.
Plants (Basel) ; 11(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35161239

RESUMO

Seed quality is an important aspect of the modern cultivation strategies since uniform germination and high seedling vigor contribute to successful establishment and crop performance. To enhance germination, beneficial microbes belonging to arbuscular mycorrhizal fungi, Trichoderma spp., rhizobia and other bacteria can be applied to seeds before sowing via coating or priming treatments. Their presence establishes early relationships with plants, leading to biostimulant effects such as plant-growth enhancement, increased nutrient uptake, and improved plant resilience to abiotic stress. This review aims to highlight the most significant results obtained for wheat, maize, rice, soybean, canola, sunflower, tomato, and other horticultural species. Beneficial microorganism treatments increased plant germination, seedling vigor, and biomass, as well as overcoming seed-related limitations (such as abiotic stress), both during and after emergence. The results are generally positive, but variable, so more scientific information needs to be acquired for different crops and cultivation techniques, with considerations to different beneficial microbes (species and strains) and under variable climate conditions to understand the effects of seed treatments.

19.
Biometals ; 35(1): 27-38, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697758

RESUMO

Iron deficiency is one of the most common nutritional deficiencies worldwide and is often treated with oral iron supplements. However, commonly used supplements, including those based on ferrous iron salts, are associated with gastrointestinal side effects and unfavorable changes in the intestinal microbiome. Sucrosomial® iron is a novel iron formulation that is effective at treating iron deficiency, and with fewer gastrointestinal side effects, yet its effect on the gut microbiome has not been examined previously. Thus, we treated mice for two weeks with diets containing either Sucrosomial® iron or ferrous sulfate as the sole iron source and examined bacterial communities in the intestine using 16S Microbial Profiling of DNA extracted from feces collected both prior to and following dietary treatment. Mice treated with Sucrosomial® iron showed an increase in Shannon diversity over the course of the study. This was associated with a decrease in the abundance of the phylum Proteobacteria, which contains many pathogenic species, and an increase in short chain fatty acid producing bacteria such as Lachnospiraceae, Oscillibacter and Faecalibaculum. None of these changes were observed in mice treated with ferrous sulfate. These results suggest that Sucrosomial® iron may have a beneficial effect on the intestinal microbiome when compared to ferrous sulfate and that this form of iron is a promising alternative to ferrous iron salts for the treatment of iron deficiency.


Assuntos
Anemia Ferropriva , Microbioma Gastrointestinal , Deficiências de Ferro , Anemia Ferropriva/tratamento farmacológico , Animais , Suplementos Nutricionais , Compostos Ferrosos/farmacologia , Ferro , Camundongos , Sais/uso terapêutico
20.
J Nutr ; 152(3): 714-722, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34625812

RESUMO

BACKGROUND: Many women enter pregnancy with iron stores that are insufficient to maintain maternal iron balance and support fetal development and consequently, often require iron supplements. However, the side effects associated with many currently available iron supplements can limit compliance. OBJECTIVE: This study aimed to test the safety and efficacy of a novel nanoparticulate iron supplement, a dietary ferritin analog termed iron hydroxide adipate tartrate (IHAT), in pregnant mice. METHODS: Female C57BL/6 mice were maintained on either an iron-deficient or a control diet for 2 wk prior to timed mating to develop iron-deficient or iron-sufficient pregnancy models, respectively. Mice from each model were then gavaged daily with 10 mg iron/kg body weight as either IHAT or ferrous sulfate, or with water only, beginning on embryonic day (E) 4.5. Mice were killed on E18.5 and maternal iron and hematological parameters were measured. The expression of genes encoding iron transporters and oxidative stress markers in the duodenum and placenta were determined, along with hepatic expression of the gene encoding the iron regulatory hormone hepcidin and fetal iron. RESULTS: Oral IHAT and ferrous sulfate were equally effective at increasing maternal hemoglobin (20.2% and 16.9%, respectively) and hepatic iron (30.2% and 29.3%, respectively), as well as total fetal iron (99.7% and 83.8%, respectively), in iron-deficient pregnant mice compared with those gavaged with water only, with no change in oxidative stress markers seen with either treatment. However, there was a significant increase in the placental expression of the oxidative stress marker heme oxygenase 1 in iron-replete pregnant mice treated with ferrous sulfate when compared with iron-replete pregnant mice gavaged with IHAT (96.9%, P <0.05). CONCLUSIONS: IHAT has proved a safe and effective alternative to oral ferrous sulfate in mice, and it has potential for treating iron deficiency in human pregnancy.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Anemia Ferropriva/tratamento farmacológico , Animais , Feminino , Ferritinas/uso terapêutico , Compostos Ferrosos/uso terapêutico , Hemoglobinas/análise , Humanos , Ferro , Camundongos , Camundongos Endogâmicos C57BL , Placenta/química , Gravidez , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...