Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Neuroinflammation ; 21(1): 163, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918792

RESUMO

BACKGROUND: The SARS-CoV-2 virus activates maternal and placental immune responses. Such activation in the setting of other infections during pregnancy is known to impact fetal brain development. The effects of maternal immune activation on neurodevelopment are mediated at least in part by fetal brain microglia. However, microglia are inaccessible for direct analysis, and there are no validated non-invasive surrogate models to evaluate in utero microglial priming and function. We have previously demonstrated shared transcriptional programs between microglia and Hofbauer cells (HBCs, or fetal placental macrophages) in mouse models. METHODS AND RESULTS: We assessed the impact of maternal SARS-CoV-2 on HBCs isolated from 24 term placentas (N = 10 SARS-CoV-2 positive cases, 14 negative controls). Using single-cell RNA-sequencing, we demonstrated that HBC subpopulations exhibit distinct cellular programs, with specific subpopulations differentially impacted by SARS-CoV-2. Assessment of differentially expressed genes implied impaired phagocytosis, a key function of both HBCs and microglia, in some subclusters. Leveraging previously validated models of microglial synaptic pruning, we showed that HBCs isolated from placentas of SARS-CoV-2 positive pregnancies can be transdifferentiated into microglia-like cells (HBC-iMGs), with impaired synaptic pruning behavior compared to HBC models from negative controls. CONCLUSION: These findings suggest that HBCs isolated at birth can be used to create personalized cellular models of offspring microglial programming.


Assuntos
COVID-19 , Macrófagos , Microglia , Placenta , Complicações Infecciosas na Gravidez , SARS-CoV-2 , Feminino , Gravidez , Microglia/virologia , Humanos , Placenta/virologia , COVID-19/imunologia , Macrófagos/virologia , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/patologia , SARS-CoV-2/patogenicidade , Feto , Adulto , Encéfalo/virologia , Encéfalo/patologia , Camundongos , Animais
2.
Biol Psychiatry ; 95(7): 676-686, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37573007

RESUMO

BACKGROUND: The CYFIP1 gene, located in the neurodevelopmental risk locus 15q11.2, is highly expressed in microglia, but its role in human microglial function as it relates to neurodevelopment is not well understood. METHODS: We generated multiple CRISPR (clustered regularly interspaced short palindromic repeat) knockouts of CYFIP1 in patient-derived models of microglia to characterize function and phenotype. Using microglia-like cells reprogrammed from peripheral blood mononuclear cells, we quantified phagocytosis of synaptosomes (isolated and purified synaptic vesicles) from human induced pluripotent stem cell (iPSC)-derived neuronal cultures as an in vitro model of synaptic pruning. We repeated these analyses in human iPSC-derived microglia-like cells derived from 3 isogenic wild-type/knockout line pairs derived from 2 donors and further characterized microglial development and function through morphology and motility. RESULTS: CYFIP1 knockout using orthogonal CRISPR constructs in multiple patient-derived cell lines was associated with a statistically significant decrease in synaptic vesicle phagocytosis in microglia-like cell models derived from both peripheral blood mononuclear cells and iPSCs. Morphology was also shifted toward a more ramified profile, and motility was significantly reduced. However, iPSC-CYFIP1 knockout lines retained the ability to differentiate to functional microglia. CONCLUSIONS: The changes in microglial phenotype and function due to the loss of function of CYFIP1 observed in this study implicate a potential impact on processes such as synaptic pruning that may contribute to CYFIP1-related neurodevelopmental disorders. Investigating risk genes in a range of central nervous system cell types, not solely neurons, may be required to fully understand the way in which common and rare variants intersect to yield neuropsychiatric disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos do Neurodesenvolvimento , Esquizofrenia , Humanos , Esquizofrenia/genética , Microglia , Leucócitos Mononucleares , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal
3.
Mol Psychiatry ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402854

RESUMO

While most of the efforts to uncover mechanisms contributing to bipolar disorder (BD) focused on phenotypes at the mature neuron stage, little research has considered events that may occur during earlier timepoints of neurodevelopment. Further, although aberrant calcium (Ca2+) signaling has been implicated in the etiology of this condition, the possible contribution of store-operated Ca2+ entry (SOCE) is not well understood. Here, we report Ca2+ and developmental dysregulations related to SOCE in BD patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells (BD-NPCs) and cortical-like glutamatergic neurons. First, using a Ca2+ re-addition assay we found that BD-NPCs and neurons had attenuated SOCE. Intrigued by this finding, we then performed RNA-sequencing and uncovered a unique transcriptome profile in BD-NPCs suggesting accelerated neurodifferentiation. Consistent with these results, we measured a slower rate of proliferation, increased neurite outgrowth, and decreased size in neurosphere formations with BD-NPCs. Also, we observed decreased subventricular areas in developing BD cerebral organoids. Finally, BD NPCs demonstrated high expression of the let-7 family while BD neurons had increased miR-34a, both being microRNAs previously implicated in neurodevelopmental deviations and BD etiology. In summary, we present evidence supporting an accelerated transition towards the neuronal stage in BD-NPCs that may be indicative of early pathophysiological features of the disorder.

4.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209683

RESUMO

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Assuntos
Síndrome do Cromossomo X Frágil , Expansão das Repetições de Trinucleotídeos , Humanos , Estruturas R-Loop , Metilação de DNA , Síndrome do Cromossomo X Frágil/genética , Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
5.
Stem Cell Reports ; 18(1): 237-253, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36563689

RESUMO

In the brain, the complement system plays a crucial role in the immune response and in synaptic elimination during normal development and disease. Here, we sought to identify pathways that modulate the production of complement component 4 (C4), recently associated with an increased risk of schizophrenia. To design a disease-relevant assay, we first developed a rapid and robust 3D protocol capable of producing large numbers of astrocytes from pluripotent cells. Transcriptional profiling of these astrocytes confirmed the homogeneity of this population of dorsal fetal-like astrocytes. Using a novel ELISA-based small-molecule screen, we identified epigenetic regulators, as well as inhibitors of intracellular signaling pathways, able to modulate C4 secretion from astrocytes. We then built a connectivity map to predict and validate additional key regulatory pathways, including one involving c-Jun-kinase. This work provides a foundation for developing therapies for CNS diseases involving the complement cascade.


Assuntos
Astrócitos , Células-Tronco Pluripotentes Induzidas , Astrócitos/metabolismo , Células-Tronco , Feto , Células-Tronco Pluripotentes Induzidas/metabolismo
6.
medRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234776

RESUMO

The SARS-CoV-2 virus activates maternal and placental immune responses, which in the setting of other infections occurring during pregnancy are known to impact fetal brain development. The effects of maternal immune activation on neurodevelopment are mediated at least in part by fetal brain microglia. However, microglia are inaccessible for direct analysis, and there are no validated non-invasive surrogate models to evaluate in utero microglial priming and function. We have previously demonstrated shared transcriptional programs between microglia and Hofbauer cells (HBCs, or fetal placental macrophages) in mouse models. Here, we assessed the impact of maternal SARS-CoV-2 on HBCs isolated from term placentas using single-cell RNA-sequencing. We demonstrated that HBC subpopulations exhibit distinct cellular programs, with specific subpopulations differentially impacted by SARS-CoV-2. Assessment of differentially expressed genes implied impaired phagocytosis, a key function of both HBCs and microglia, in some subclusters. Leveraging previously validated models of microglial synaptic pruning, we showed that HBCs isolated from placentas of SARS-CoV-2 positive pregnancies can be transdifferentiated into microglia-like cells, with altered morphology and impaired synaptic pruning behavior compared to HBC models from negative controls. These findings suggest that HBCs isolated at birth can be used to create personalized cellular models of offspring microglial programming.

7.
Nat Commun ; 13(1): 6427, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329007

RESUMO

Postsynaptic density is reduced in schizophrenia, and risk variants increasing complement component 4A (C4A) gene expression are linked to excessive synapse elimination. In two independent cohorts, we show that cerebrospinal fluid (CSF) C4A concentration is elevated in patients with first-episode psychosis (FEP) who develop schizophrenia (FEP-SCZ: median 0.41 fmol/ul [CI = 0.34-0.45], FEP-non-SCZ: median 0.29 fmol/ul [CI = 0.22-0.35], healthy controls: median 0.28 [CI = 0.24-0.33]). We show that the CSF elevation of C4A in FEP-SCZ exceeds what can be expected from genetic risk variance in the C4 locus, and in patient-derived cellular models we identify a mechanism dependent on the disease-associated cytokines interleukin (IL)-1beta and IL-6 to selectively increase neuronal C4A mRNA expression. In patient-derived CSF, we confirm that IL-1beta correlates with C4A controlled for genetically predicted C4A RNA expression (r = 0.39; CI: 0.01-0.68). These results suggest a role of C4A in early schizophrenia pathophysiology.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Complemento C4a/genética , Complemento C4a/líquido cefalorraquidiano , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transtornos Psicóticos/genética , Fatores de Risco
8.
Mol Psychiatry ; 27(10): 3939-3950, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198765

RESUMO

Neuropsychiatric manifestations are common in both the acute and post-acute phase of SARS-CoV-2 infection, but the mechanisms of these effects are unknown. In a newly established brain organoid model with innately developing microglia, we demonstrate that SARS-CoV-2 infection initiate neuronal cell death and cause a loss of post-synaptic termini. Despite limited neurotropism and a decelerating viral replication, we observe a threefold increase in microglial engulfment of postsynaptic termini after SARS-CoV-2 exposure. We define the microglial responses to SARS-CoV-2 infection by single cell transcriptomic profiling and observe an upregulation of interferon-responsive genes as well as genes promoting migration and synapse engulfment. To a large extent, SARS-CoV-2 exposed microglia adopt a transcriptomic profile overlapping with neurodegenerative disorders that display an early synapse loss as well as an increased incident risk after a SARS-CoV-2 infection. Our results reveal that brain organoids infected with SARS-CoV-2 display disruption in circuit integrity via microglia-mediated synapse elimination and identifies a potential novel mechanism contributing to cognitive impairments in patients recovering from COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Organoides , Microglia , Encéfalo , Terminações Pré-Sinápticas
9.
Sci Rep ; 12(1): 9143, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650420

RESUMO

Activity-induced neurogenesis has been extensively studied in rodents but the lack of ante mortem accessibility to human brain at the cellular and molecular levels limits studies of the process in humans. Using cerebral spheroids derived from human induced pluripotent stem cells (iPSCs), we investigated the effects of 4-aminopyridine (4AP) on neuronal activity and associated neurogenesis. Our studies demonstrate that 4AP increases neuronal activity in 3-month-old cerebral spheroids while increasing numbers of new neurons and decreasing the population of new glial cells. We also observed a significant decrease in the expression of miR-135a, which has previously been shown to be decreased in exercise-induced neurogenesis. Predicted targets of miR-135a include key participants in the SMAD2/3 and BDNF pathways. Together, our results suggest that iPSC-derived cerebral spheroids are an attractive model to study several aspects of activity-induced neurogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , MicroRNAs , Células-Tronco Neurais , 4-Aminopiridina/metabolismo , 4-Aminopiridina/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética
10.
Biol Psychiatry ; 92(6): 470-479, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35232567

RESUMO

Multiple lines of evidence implicate dysregulated microglia-mediated synaptic pruning in the pathophysiology of schizophrenia. In vitro human cellular studies represent a promising means of pursuing this hypothesis, complementing efforts with animal models and postmortem human data while addressing their limitations. The challenges in culturing homogeneous populations of cells derived from postmortem or surgical biopsy brain material from patients, and their limited availability, has led to a focus on differentiation of induced pluripotent stem cells. These methods too have limitations, in that they disrupt the epigenome and can demonstrate line-to-line variability due in part to extended time in culture, partial reprogramming, and/or residual epigenetic memory from the cell source, yielding large technical artifacts. Yet another strategy uses direct transdifferentiation of peripheral mononuclear blood cells, or umbilical cord blood cells, to microglia-like cells. Any of these approaches can be paired with patient-derived synaptosomes from differentiated neurons as a simpler alternative to co-culture. Patient-derived microglia models may facilitate identification of novel modulators of synaptic pruning and identification of biomarkers that may allow more targeted early interventions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Microglia/patologia , Plasticidade Neuronal/fisiologia , Neurônios/patologia
11.
Stem Cells Dev ; 30(14): 705-713, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34036793

RESUMO

Human pluripotent stem cells (hPSCs) have generated significant interest in the scientific community based on their potential applications in regenerative medicine. However, numerous research groups have reported a propensity for genomic alterations during hPSC culture that poses concerns for basic research and clinical applications. Work from our laboratory and others has demonstrated that amplification of chromosomal regions is correlated with increased gene expression. To date, the phenotypic association of common genomic alterations remains unclear and is a cause for concern during clinical use. In this study, we focus on trisomy 17 and a list of candidate genes with increased gene expression to hypothesize that overexpressing 17q25 located ARHGDIA will confer selective advantage to hPSCs. HPSC lines overexpressing ARHGDIA exhibited culture dominance in co-cultures of overexpression lines with nonoverexpression lines. Furthermore, during low-density seeding, we demonstrate increased clonality of our ARHGDIA lines against matched controls. A striking observation is that we could reduce this selective advantage by varying the hPSC culture conditions with the addition of ROCK inhibitor (ROCKi). This work is unique in (1) demonstrating a novel gene that confers selective advantage to hPSCs when overexpressed and may help explain a common trisomy dominance, (2) providing a selection model for studying culture conditions that reduce the appearance of genomically altered hPSCs, and (3) aiding in elucidation of a mechanism that may act as a molecular switch during culture adaptation.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Humanos , Medicina Regenerativa
12.
Transl Psychiatry ; 11(1): 179, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741894

RESUMO

Microglia, the resident brain immune cells, play a critical role in normal brain development, and are impacted by the intrauterine environment, including maternal immune activation and inflammatory exposures. The COVID-19 pandemic presents a potential developmental immune challenge to the fetal brain, in the setting of maternal SARS-CoV-2 infection with its attendant potential for cytokine production and, in severe cases, cytokine storming. There is currently no biomarker or model for in utero microglial priming and function that might aid in identifying the neonates and children most vulnerable to neurodevelopmental morbidity, as microglia remain inaccessible in fetal life and after birth. This study aimed to generate patient-derived microglial-like cell models unique to each neonate from reprogrammed umbilical cord blood mononuclear cells, adapting and extending a novel methodology previously validated for adult peripheral blood mononuclear cells. We demonstrate that umbilical cord blood mononuclear cells can be used to create microglial-like cell models morphologically and functionally similar to microglia observed in vivo. We illustrate the application of this approach by generating microglia from cells exposed and unexposed to maternal SARS-CoV-2 infection. Our ability to create personalized neonatal models of fetal brain immune programming enables non-invasive insights into fetal brain development and potential childhood neurodevelopmental vulnerabilities for a range of maternal exposures, including COVID-19.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/imunologia , COVID-19/imunologia , Reprogramação Celular , Sangue Fetal/imunologia , Células-Tronco Pluripotentes Induzidas , Leucócitos Mononucleares/imunologia , Microglia/imunologia , Complicações Infecciosas na Gravidez/imunologia , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez
13.
Mol Cancer Res ; 19(5): 757-770, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33495401

RESUMO

Gliomas are characterized by diffuse infiltration of tumor cells into surrounding brain tissue, and this highly invasive nature contributes to disease recurrence and poor patient outcomes. The molecular mechanisms underlying glioma cell invasion remain incompletely understood, limiting development of new targeted therapies. Here, we have identified phosphotyrosine adaptor protein ShcD as upregulated in malignant glioma and shown that it associates with receptor tyrosine kinase Tie2 to facilitate invasion. In human glioma cells, we find that expression of ShcD and Tie2 increases invasion, and this significant synergistic effect is disrupted with a ShcD mutant that cannot bind Tie2 or hyperphosphorylate the receptor. Expression of ShcD and/or Tie2 further increases invadopodia formation and matrix degradation in U87 glioma cells. In a coculture model, we show that U87-derived tumor spheroids expressing both ShcD and Tie2 display enhanced infiltration into cerebral organoids. Mechanistically, we identify changes in focal adhesion kinase phosphorylation in the presence of ShcD and/or Tie2 in U87 cells upon Tie2 activation. Finally, we identify a strong correlation between transcript levels of ShcD and Tie2 signaling components as well as N-cadherin in advanced gliomas and those with classical or mesenchymal subtypes, and we show that elevated expression of ShcD correlates with a significant reduction in patient survival in higher grade gliomas with mesenchymal signature. Altogether, our data highlight a novel Tie2-ShcD signaling axis in glioma cell invasion, which may be of clinical significance. IMPLICATIONS: ShcD cooperates with Tie2 to promote glioma cell invasion and its elevated expression correlates with poor patient outcome in advanced gliomas.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Receptor TIE-2/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Sequência de Aminoácidos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/genética , Glioma/patologia , Células HEK293 , Humanos , Invasividade Neoplásica , Transfecção
14.
Mol Psychiatry ; 26(9): 4605-4615, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32504049

RESUMO

Evidence from epidemiological and laboratory studies, as well as randomized placebo-controlled trials, suggests supplementation with n-3 polyunsaturated fatty acids (PUFAs) may be efficacious for treatment of major depressive disorder (MDD). The mechanisms underlying n-3 PUFAs potential therapeutic properties remain unknown. There are suggestions in the literature that glial hypofunction is associated with depressive symptoms and that antidepressants may normalize glial function. In this study, induced pluripotent stem cells (iPSC)-derived neuronal stem cell lines were generated from individuals with MDD. Astrocytes differentiated from patient-derived neuronal stem cells (iNSCs) were verified by GFAP. Cells were treated with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or stearic acid (SA). During astrocyte differentiation, we found that n-3 PUFAs increased GFAP expression and GFAP positive cell formation. BDNF and GDNF production were increased in the astrocytes derived from patients subsequent to n-3 PUFA treatment. Stearic Acid (SA) treatment did not have this effect. CREB activity (phosphorylated CREB) was also increased by DHA and EPA but not by SA. Furthermore, when these astrocytes were treated with n-3 PUFAs, the cAMP antagonist, RP-cAMPs did not block n-3 PUFA CREB activation. However, the CREB specific inhibitor (666-15) diminished BDNF and GDNF production induced by n-3 PUFA, suggesting CREB dependence. Together, these results suggested that n-3 PUFAs facilitate astrocyte differentiation, and may mimic effects of some antidepressants by increasing production of neurotrophic factors. The CREB-dependence and cAMP independence of this process suggests a manner in which n-3 PUFA could augment antidepressant effects. These data also suggest a role for astrocytes in both MDD and antidepressant action.


Assuntos
Transtorno Depressivo Maior , Ácidos Graxos Ômega-3 , Células-Tronco Neurais , Astrócitos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Humanos , Fatores de Crescimento Neural , Neurogênese
15.
bioRxiv ; 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33052344

RESUMO

Microglia, the resident brain immune cells, play a critical role in normal brain development, and are impacted by the intrauterine environment, including maternal immune activation and inflammatory exposures. The COVID-19 pandemic presents a potential developmental immune challenge to the fetal brain, in the setting of maternal SARS-CoV-2 infection with its attendant potential for cytokine production and, in severe cases, cytokine storming. There is currently no biomarker or model for in utero microglial priming and function that might aid in identifying the neonates and children most vulnerable to neurodevelopmental morbidity, as microglia remain inaccessible in fetal life and after birth. This study aimed to generate patient-derived microglial-like cell models unique to each neonate from reprogrammed umbilical cord blood mononuclear cells, adapting and extending a novel methodology previously validated for adult peripheral blood mononuclear cells. We demonstrate that umbilical cord blood mononuclear cells can be used to create microglial-like cell models morphologically and functionally similar to microglia observed in vivo . We illustrate the application of this approach by generating microglia from cells exposed and unexposed to maternal SARS-CoV-2 infection. Our ability to create personalized neonatal models of fetal brain immune programming enables non-invasive insights into fetal brain development and potential childhood neurodevelopmental vulnerabilities for a range of maternal exposures, including COVID-19.

16.
Transl Psychiatry ; 10(1): 76, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094324

RESUMO

The effective treatment of bipolar disorder (BD) represents a significant unmet medical need. Although lithium remains a mainstay of treatment for BD, limited knowledge regarding how it modulates affective behavior has proven an obstacle to discovering more effective mood stabilizers with fewer adverse side effects. One potential mechanism of action of lithium is through inhibition of the serine/threonine protein kinase GSK3ß, however, relevant substrates whose change in phosphorylation may mediate downstream changes in neuroplasticity remain poorly understood. Here, we used human induced pluripotent stem cell (hiPSC)-derived neuronal cells and stable isotope labeling by amino acids in cell culture (SILAC) along with quantitative mass spectrometry to identify global changes in the phosphoproteome upon inhibition of GSK3α/ß with the highly selective, ATP-competitive inhibitor CHIR-99021. Comparison of phosphorylation changes to those induced by therapeutically relevant doses of lithium treatment led to the identification of collapsin response mediator protein 2 (CRMP2) as being highly sensitive to both treatments as well as an extended panel of structurally distinct GSK3α/ß inhibitors. On this basis, a high-content image-based assay in hiPSC-derived neurons was developed to screen diverse compounds, including FDA-approved drugs, for their ability to mimic lithium's suppression of CRMP2 phosphorylation without directly inhibiting GSK3ß kinase activity. Systemic administration of a subset of these CRMP2-phosphorylation suppressors were found to mimic lithium's attenuation of amphetamine-induced hyperlocomotion in mice. Taken together, these studies not only provide insights into the neural substrates regulated by lithium, but also provide novel human neuronal assays for supporting the development of mechanism-based therapeutics for BD and related neuropsychiatric disorders.


Assuntos
Transtorno Bipolar , Células-Tronco Pluripotentes Induzidas , Anfetamina/farmacologia , Animais , Transtorno Bipolar/tratamento farmacológico , Humanos , Lítio/farmacologia , Compostos de Lítio/farmacologia , Camundongos , Fosforilação
17.
Mol Autism ; 11(1): 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31921404

RESUMO

Background: Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder with frequent occurrence of epilepsy, autism spectrum disorder (ASD), intellectual disability (ID), and tumors in multiple organs. The aberrant activation of mTORC1 in TSC has led to treatment with mTORC1 inhibitor rapamycin as a lifelong therapy for tumors, but TSC-associated neurocognitive manifestations remain unaffected by rapamycin. Methods: Here, we generated patient-specific, induced pluripotent stem cells (iPSCs) from a TSC patient with a heterozygous, germline, nonsense mutation in exon 15 of TSC1 and established an isogenic set of heterozygous (Het), null and corrected wildtype (Corr-WT) iPSCs using CRISPR/Cas9-mediated gene editing. We differentiated these iPSCs into neural progenitor cells (NPCs) and examined neurodevelopmental phenotypes, signaling and changes in gene expression by RNA-seq. Results: Differentiated NPCs revealed enlarged cell size in TSC1-Het and Null NPCs, consistent with mTORC1 activation. TSC1-Het and Null NPCs also revealed enhanced proliferation and altered neurite outgrowth in a genotype-dependent manner, which was not reversed by rapamycin. Transcriptome analyses of TSC1-NPCs revealed differentially expressed genes that display a genotype-dependent linear response, i.e., genes upregulated/downregulated in Het were further increased/decreased in Null. In particular, genes linked to ASD, epilepsy, and ID were significantly upregulated or downregulated warranting further investigation. In TSC1-Het and Null NPCs, we also observed basal activation of ERK1/2, which was further activated upon rapamycin treatment. Rapamycin also increased MNK1/2-eIF4E signaling in TSC1-deficient NPCs. Conclusion: MEK-ERK and MNK-eIF4E pathways regulate protein translation, and our results suggest that aberrant translation distinct in TSC1/2-deficient NPCs could play a role in neurodevelopmental defects. Our data showing upregulation of these signaling pathways by rapamycin support a strategy to combine a MEK or a MNK inhibitor with rapamycin that may be superior for TSC-associated CNS defects. Importantly, our generation of isogenic sets of NPCs from TSC patients provides a valuable platform for translatome and large-scale drug screening studies. Overall, our studies further support the notion that early developmental events such as NPC proliferation and initial process formation, such as neurite number and length that occur prior to neuronal differentiation, represent primary events in neurogenesis critical to disease pathogenesis of neurodevelopmental disorders such as ASD.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esclerose Tuberosa , Sistemas CRISPR-Cas , Códon sem Sentido , Edição de Genes , Mutação em Linhagem Germinativa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Neurogênese , Fenótipo , RNA-Seq , Transdução de Sinais , Sirolimo , Proteína 1 do Complexo Esclerose Tuberosa/genética
18.
IEEE/ACM Trans Comput Biol Bioinform ; 17(6): 1846-1857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30990190

RESUMO

Gene expression data can offer deep, physiological insights beyond the static coding of the genome alone. We believe that realizing this potential requires specialized, high-capacity machine learning methods capable of using underlying biological structure, but the development of such models is hampered by the lack of published benchmark tasks and well characterized baselines. In this work, we establish such benchmarks and baselines by profiling many classifiers against biologically motivated tasks on two curated views of a large, public gene expression dataset (the LINCS corpus) and one privately produced dataset. We provide these two curated views of the public LINCS dataset and our benchmark tasks to enable direct comparisons to future methodological work and help spur deep learning method development on this modality. In addition to profiling a battery of traditional classifiers, including linear models, random forests, decision trees, K nearest neighbor (KNN) classifiers, and feed-forward artificial neural networks (FF-ANNs), we also test a method novel to this data modality: graph convolugtional neural networks (GCNNs), which allow us to incorporate prior biological domain knowledge. We find that GCNNs can be highly performant, with large datasets, whereas FF-ANNs consistently perform well. Non-neural classifiers are dominated by linear models and KNN classifiers.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Aprendizado Profundo , Perfilação da Expressão Gênica , Transcriptoma/genética , Algoritmos , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Humanos , Modelos Genéticos , Mapas de Interação de Proteínas
20.
Neuropsychopharmacology ; 45(4): 656-665, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31775160

RESUMO

The ability of small secretory microvesicles known as exosomes to influence neuronal and glial function via their microRNA (miRNA) cargo has positioned them as a novel and effective method of cell-to-cell communication. However, little is known about the role of exosome-secreted miRNAs in the regulation of glutamate receptor gene expression and their relevance for schizophrenia (SCZ) and bipolar disorder (BD). Using mature miRNA profiling and quantitative real-time PCR (qRT-PCR) in the orbitofrontal cortex (OFC) of SCZ (N = 29; 20 male and 9 female), BD (N = 26; 12 male and 14 female), and unaffected control (N = 25; 21 male and 4 female) subjects, we uncovered that miR-223, an exosome-secreted miRNA that targets glutamate receptors, was increased at the mature miRNA level in the OFC of SCZ and BD patients with positive history of psychosis at the time of death and was inversely associated with deficits in the expression of its targets glutamate ionotropic receptor NMDA-type subunit 2B (GRIN2B) and glutamate ionotropic receptor AMPA-type subunit 2 (GRIA2). Furthermore, changes in miR-223 levels in the OFC were positively and negatively correlated with inflammatory and GABAergic gene expression, respectively. Moreover, miR-223 was found to be enriched in astrocytes and secreted via exosomes, and antipsychotics were shown to control its cellular and exosomal localization in a cell-specific manner. Furthermore, addition of astrocytic exosomes in neuronal cultures resulted in a significant increase in miR-223 expression and a notable reduction in Grin2b and Gria2 mRNA levels, which was strongly inversely associated with miR-223 expression. Lastly, inhibition of astrocytic miR-223 abrogated the exosomal-mediated reduction in neuronal Grin2b expression. Taken together, our results demonstrate that the exosomal secretion of a psychosis-altered and glial-enriched miRNA that controls neuronal gene expression is regulated by antipsychotics.


Assuntos
Antipsicóticos/farmacologia , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , MicroRNAs/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Esquizofrenia/metabolismo , Animais , Antipsicóticos/uso terapêutico , Células Cultivadas , Exossomos/genética , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...