Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(37): 11199-11209, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067497

RESUMO

Despite the importance of noncovalent interactions in the utilization of metal-organic frameworks (MOFs), using these interactions to functionalize MOFs has rarely been explored. The ease of functionalization and potential for surface-selective functionalization makes modification via noncovalent interactions promising for the creation of porous photocatalytic assemblies. Using isothermal titration calorimetry, photoluminescence measurements, and desorption experiments, we have explored the nature and magnitude of the interactions of [Ru(bpy)2(bpy-R)]2+-functionalized dyes with the surface of MIL-96, where R = C3, C8, C12, and C18 alkyl chains of either straight-chain or cyclic conformations. The orientation of the dyes appears to be flat against the surface with respect to the long alkyl chains, and the surface concentration approaches a monolayer at high initial concentrations of dye. Strangely, the dodecyl-functionalized dye, despite having a smaller interaction energy and larger footprint than either octyl-functionalized dye, achieves the highest maximum surface concentration. Based on photoluminescence spectra, desorption experiments, and ITC data, we believe this is due to the core of the dye being lifted from the surface as the chain length increases. Our understanding of these interactions is important for further utilization of this method for the functionalization of the internal and external surface areas of MOFs.

2.
ACS Appl Mater Interfaces ; 13(19): 22485-22494, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33961384

RESUMO

Ammonia capture by porous materials is relevant to protection of humans from chemical threats, while ammonia separation may be relevant to its isolation and use following generation by emerging electrochemical schemes. Our previous work described both reversible and irreversible interactions of ammonia with the metal-organic framework (MOF) material, NU-1000, following thermal treatment at either 120 or 300 °C. In the present work, we have examined NU-1000-Cl, a variant that features a modified node structure-at ambient temperature, Zr6(µ3-O)4(µ3-OH)4(H2O)812+ in place of Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)48+. Carboxylate termini from each of eight linkers balance the 8+ charge of the parent node, while four chloride ions, attached only by hydrogen bonding, complete the charge balance for the 12+ version. We find that both reversible and irreversible uptake of ammonia are enhanced for NU-1000-Cl, relative to the chloride-free version. Two irreversible interactions were observed via in situ diffuse-reflectance infrared Fourier-transform spectroscopy: coordination of NH3 at open Zr sites generated during thermal pretreatment and formation of NH4+ by proton transfer from node aqua ligands. The irreversibility of the latter appears to be facilitated by the presence chloride ions, as NH4+ formation occurs reversibly with chloride-free NU-1000. At room temperature, chemically reversible (and irreversible) interactions between ammonia and NU-1000-Cl result in separation of NH3 from N2 when gas mixtures are examined with breakthrough instrumentation, as evinced by a much longer breakthrough time (∼9 min) for NH3.

3.
Chem Commun (Camb) ; 57(29): 3571-3574, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33704273

RESUMO

The well-known MOF (metal-organic framework) linker tetrakis(p-benzoate)pyrene (TBAPy4-) lacks steric hindrance between its benzoates. Changing the 1,3,6,8-siting of benzoates in TBAPy4- to 4,5,9,10-siting introduces substantial steric hindrance and, in turn, enables the synthesis of a new hierarchically porous, she-type MOF Zr6(µ3-O)4(µ3-OH)4(C6H5COO)3(COO)3(TBAPy-2)3/2 (NU-601), where TBAPy-24- is the 4,5,9,10 isomer of TBAPy4-. NU-601 shows high catalytic activity for degradative hydrolysis of a simulant for G-type fluoro-phosphorus nerve agents.

4.
Dalton Trans ; 50(8): 2746-2756, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33459317

RESUMO

Manganese ([Mn(CO)3]) and rhenium tricarbonyl ([Re(CO)3]) complexes represent a workhorse family of compounds with applications in a variety of fields. Here, the coordination, structural, and electrochemical properties of a family of mono- and bimetallic [Mn(CO)3] and [Re(CO)3] complexes are explored. In particular, a novel heterobimetallic complex featuring both [Mn(CO)3] and [Re(CO)3] units supported by 2,2'-bipyrimidine (bpm) has been synthesized, structurally characterized, and compared to the analogous monomeric and homobimetallic complexes. To enable a comprehensive structural analysis for the series of complexes, we have carried out new single crystal X-ray diffraction studies of seven compounds: Re(CO)3Cl(bpm), anti-[{Re(CO3)Cl}2(bpm)], Mn(CO)3Br(bpz) (bpz = 2,2'-bipyrazine), Mn(CO)3Br(bpm), syn- and anti-[{Mn(CO3)Br}2(bpm)], and syn-[Mn(CO3)Br(bpm)Re(CO)3Br]. Electrochemical studies reveal that the bimetallic complexes are reduced at much more positive potentials (ΔE≥ 380 mV) compared to their monometallic analogues. This redox behavior is consistent with introduction of the second tricarbonyl unit which inductively withdraws electron density from the bridging, redox-active bpm ligand, resulting in more positive reduction potentials. [Re(CO3)Cl]2(bpm) was reduced with cobaltocene; the electron paramagnetic resonance spectrum of the product exhibits an isotropic signal (near g = 2) characteristic of a ligand-centered bpm radical. Our findings highlight the facile synthesis as well as the structural characteristics and unique electrochemical behavior of this family of complexes.

5.
Langmuir ; 36(36): 10853-10859, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32841562

RESUMO

Effective permeation into, and diffusive mass transport within, solvent-filled metal-organic frameworks (MOFs) is critical in applications such as MOF-based chemical catalysis of condensed-phase reactions. In this work, we studied the entry from solution of a luminescent probe molecule, 1,3,5,7-tetramethyl-4,4-difluoroboradiazaindacene (BODIPY), into the 1D channel-type, zirconium-based MOF NU-1008 and subsequent transport of the probe through the MOF. Measurements were accomplished via in situ confocal fluorescence microscopy of individual crystallites, where the evolution of the fluorescence response from the crystallite was followed as functions of both time and location within the crystallite. From the confocal data, intracrystalline transport of BODIPY is well-described by one-dimensional diffusion along the channel direction. Varying the chemical identity of the solvent revealed an inverse dependence of probe-molecule diffusivity on bulk-solvent viscosity, qualitatively consistent with expectations from the Stokes-Einstein equation for molecular diffusion. At a more quantitative level, however, measured diffusion coefficients are about 100-fold smaller than expected from Stokes-Einstein, pointing to substantial channel-confinement effects. Evaluation of the confocal data also reveals a non-negligible mass transport resistance, i.e., surface barrier, associated with the probe molecule leaving the solution and permeating the exterior surface of the MOF. Permeation by the probe entails displacement of solvent from the MOF channels. The magnitude of the resistance increases with the size of the solvent molecule. This work draws attention to the importance of MOF structure, external-surface barriers, and solvent molecule identity to the overall transport process in MOFs, which should assist in understanding the performance of MOFs in applications such as condensed-phase heterogeneous catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...