Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prev Nutr Food Sci ; 22(3): 172-183, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29043214

RESUMO

Vitamin A and its metabolites modulate insulin resistance and regulate stearoyl-CoA desaturase 1 (SCD1), which are also known to affect insulin resistance. Here, we tested, whether vitamin A-mediated changes in insulin resistance markers are associated with SCD1 regulation or not. For this purpose, 30-week old male lean and glucose-intolerant obese rats of WNIN/GR-Ob strain were given either a stock or vitamin A-enriched diet, i.e. 2.6 mg or 129 mg vitamin A/kg diet, for 14 weeks. Compared to the stock diet, vitamin A-enriched diet feeding improved hyperglycemia and glucose-clearance rate in obese rats and no such changes were seen in lean rats receiving identical diets. These changes were corroborated with concomitant increase in circulatory insulin and glycogen levels of liver and muscle (whose insulin signaling pathway genes were up-regulated) in obese rats. Further, the observed increase in muscle glycogen content in these obese rats could be explained by increased levels of the active form of glycogen synthase, the key regulator of glycogen synthesis pathway, possibly inactivated through increased phosphorylation of its upstream inhibitor, glycogen synthase kinase. However, the unaltered hepatic SCD1 protein expression (despite decreased mRNA level) and increased muscle-SCD1 expression (both at gene and protein levels) suggest that vitamin A-mediated changes on glucose metabolism are not associated with SCD1 regulation. Chronic consumption of vitamin A-enriched diet improved hyperglycemia and glucose-intolerance, possibly, through the regulation of intracellular signaling and glycogen synthesis pathways of muscle and liver, but not associated with SCD1.

2.
Indian J Med Res ; 144(2): 238-244, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27934803

RESUMO

BACKGROUND & OBJECTIVES: Hepatic scavenger receptor class B1 (SR-B1), a high-density lipoprotein (HDL) receptor, is involved in the selective uptake of HDL-associated esterified cholesterol (EC), thereby regulates cholesterol homoeostasis and improves reverse cholesterol transport. Previously, we reported in euglycaemic obese rats (WNIN/Ob strain) that feeding of vitamin A-enriched diet normalized hypercholesterolaemia, possibly through hepatic SR-B1-mediated pathway. This study was aimed to test whether it would be possible to normalize hypercholesterolaemia in glucose-intolerant obese rat model (WNIN/GR/Ob) through similar mechanism by feeding identical vitamin A-enriched diet. METHODS: In this study, 30 wk old male lean and obese rats of WNIN/GR-Ob strain were divided into two groups and received either stock diet or vitamin A-enriched diet (2.6 mg or 129 mg vitamin A/kg diet) for 14 wk. Blood and other tissues were collected for various biochemical analyses. RESULTS: Chronic vitamin A-enriched diet feeding decreased hypercholesterolaemia and normalized abnormally elevated plasma HDL-cholesterol (HDL-C) levels in obese rats as compared to stock diet-fed obese groups. Further, decreased free cholesterol (FC) and increased esterified cholesterol (EC) contents of plasma cholesterol were observed, which were reflected in higher EC to FC ratio of vitamin A-enriched diet-fed obese rats. However, neither lecithin-cholesterol acyltransferase (LCAT) activity of plasma nor its expression (both gene and protein) in the liver were altered. On the contrary, hepatic cholesterol levels significantly increased in vitamin A-enriched diet fed obese rats. Hepatic SR-B1 expression (both mRNA and protein) remained unaltered among groups. Vitamin A-enriched diet fed obese rats showed a significant increase in hepatic low-density lipoprotein receptor mRNA levels, while the expression of genes involved in HDL synthesis, namely, ATP-binding cassette protein 1 (ABCA1) and apolipoprotein A-I, were downregulated. No such response was seen in vitamin A-supplemented lean rats as compared with their stock diet-fed lean counterparts. INTERPRETATION & CONCLUSIONS: Chronic vitamin A-enriched diet feeding decreased hypercholesterolaemia and normalized HDL-C levels, possibly by regulating pathways involved in HDL synthesis and degradation, independent of hepatic SR-B1 in this glucose-intolerant obese rat model.


Assuntos
Colesterol/sangue , Hipercolesterolemia/sangue , Obesidade/sangue , Receptores Depuradores Classe B/biossíntese , Vitamina A/administração & dosagem , Transportador 1 de Cassete de Ligação de ATP/biossíntese , Animais , Apolipoproteína A-I/biossíntese , Transporte Biológico/genética , Colesterol/genética , HDL-Colesterol/biossíntese , HDL-Colesterol/sangue , Dieta , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Hipercolesterolemia/dietoterapia , Hipercolesterolemia/genética , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Obesidade/dietoterapia , Obesidade/genética , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Ratos , Receptores Depuradores Classe B/genética , Vitamina A/metabolismo
3.
Exp Physiol ; 100(11): 1352-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25900735

RESUMO

NEW FINDINGS: What is the central question of this study? Previously, we reported that chronic feeding of a vitamin A-enriched diet to euglycaemic obese rats (WNIN/Ob) ameliorated obesity. Does this diet exert similar effects even with a different genetic background, i.e. obese rats of the WNIN/GR-Ob strain with impaired glucose tolerance? What is the main finding and its importance? Vitamin A-enriched diet aggravated weight gain and adiposity/obesity in both lean and glucose-intolerant obese rats of the WNIN/GR-Ob strain. Therefore, the role of genetic factors and their regulation by nutrients in determining health and disease conditions assumes greater significance in experimental and clinical research. Vitamin A and its metabolites are key regulators of the development of adipose tissue and its associated metabolic complications. Here, we tested, in a glucose-intolerant obese rat model (the WNIN/GR-Ob stain), whether feeding a vitamin A-enriched diet alters adiposity and its associated changes. For this purpose, 30-week-old male lean and obese rats were divided into two groups and received either stock diet or vitamin A-enriched diet [2.6 or 129 mg vitamin A (kg diet)(-1) , respectively] for 14 weeks. At the end, feeding of the vitamin A-enriched diet resulted in increased body weight gain/obesity and retroperitoneal white adipose tissue (RPWAT) in both lean and obese rats of the WNIN/GR-Ob strain, when compared with their respective control animals receiving stock diet, without affecting food intake. An improvement in hypertriglyceridaemia and circulatory non-esterified fatty acid levels and unaltered hepatic fatty acid oxidative and triglyceride secretory pathway proteins with vitamin A-enriched diet feeding are suggestive of enhanced hepatic clearance of circulatory lipids, resulting in increased hepatic triglyceride accumulation. Transcriptional analysis of RPWAT showed that feeding the vitamin A-enriched diet augmented the expression of adipogenic/adipose tissue-specific genes; peroxisome proliferator-activated receptor-γ, stearoyl CoA desaturase 1, retinol saturase, leptin and lipoprotein lipase and vitamin A metabolic pathway genes; retinoic acid receptors, retinoid X receptors and cytochrome P450 26B1. Besides, RPWAT-lipoprotein lipase-mediated clearance of triglyceride could also have contributed to increased adiposity and improved hypertriglyceridaemia. In conclusion, chronic feeding of vitamin A-enriched diet induces weight gain and adiposity in both lean and obese rats of the WNIN/GR-Ob strain, possibly through transcriptional regulation of key adipogenic pathway genes of RPWAT, but improves dyslipidaemia.


Assuntos
Adiposidade/efeitos dos fármacos , Dieta , Obesidade/patologia , Vitamina A/administração & dosagem , Aumento de Peso/efeitos dos fármacos , Adipogenia/genética , Animais , Regulação da Expressão Gênica , Glucose , Hipertrigliceridemia/patologia , Fígado/química , Masculino , Ratos , Ratos Endogâmicos , Triglicerídeos/química
4.
Atherosclerosis ; 204(1): 136-40, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18848326

RESUMO

Dietary fatty acids are known to play an important role in the development as well as prevention of dyslipidemia. In this study, we evaluated the impact of feeding polyunsaturated fatty acids (PUFAs) for a period of 4 months on various aspects of cholesterol metabolism in genetically obese mutant rats of WNIN/GR-Ob strain. Based on their phenotype, lean and obese rats were divided into two groups, A and B respectively, and further subdivided depending on the type of dietary fat. Control groups of rats (AI and BI), were fed on 4% groundnut oil, which was replaced by safflower oil; n-6 PUFA diet (AII and BII) or oil blend of safflower and soybean oil, n-6 and n-3 PUFA diet (AIII and BIII) in the experimental groups. It was observed that feeding of diets with n-6 PUFA or a combination of n-6 and n-3 PUFAs resulted in marked elevation of plasma levels of total as well as HDL cholesterol and triglycerides in obese rats (BII and BIII), as compared to the control group (BI). Further, plasma HDL fraction of obese rats had elevated apolipoprotein E (apo E), while apo A1 levels remained unaltered. Increased lecithin: cholesterol acyltransferase (LCAT) activity and cholesteryl ester (CE) levels in the plasma and enhanced expression of hepatic scavenger receptor class B type1 (SR-B1) were also observed in PUFA-fed obese rats (BII and BIII). However, there was no change in hepatic ATP-binding cassette transporter protein A1 (ABCA1) levels in the obese rats fed on PUFA rich diets. Intriguingly, though these changes favor efficient removal of cholesterol from peripheral tissues, its esterification and enhanced clearance through reverse cholesterol transport (RCT); plasma HDL-C remained higher in these genetically dyslipidemic obese rats, thereby pointing at yet unknown mechanisms, involved in cholesterol homeostasis, which need to be studied.


Assuntos
Colesterol/metabolismo , Gorduras na Dieta/administração & dosagem , Dislipidemias/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Fígado/metabolismo , Obesidade/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteínas/sangue , Colesterol/sangue , Ésteres do Colesterol/sangue , HDL-Colesterol/sangue , Gorduras na Dieta/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Masculino , Óleo de Amendoim , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Óleos de Plantas/administração & dosagem , Ratos , Ratos Mutantes , Óleo de Cártamo/administração & dosagem , Receptores Depuradores Classe B/metabolismo , Óleo de Soja/administração & dosagem , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...