Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 33: 34-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24862858

RESUMO

The vulva search corresponds to the first step of mating in Caenorhabditis elegans wherein the male recognizes a potential mate through contact and commences a systematic, contact-based search of her surface for the vulva. During this 'dance' the male presses his tail genitalia firmly against the hermaphrodite surface and moves backward, modulating tail posture to effect changes in search trajectory. Upon sensing the vulva, the male pauses and the insemination phase of mating begins. External tail sensilla, the rays, induce and guide the male's search by registering hermaphrodite surface cues. C. elegans male mating behavior, like many other animate interactions (such as predator-prey interactions or intrasexual aggression), is performed at close quarters and requires that participants constantly adjust their movement with respect to one another on a moment-by-moment basis. The design features of the supporting circuitry explain simultaneously the robustness, speed and acuity of the male's behavior and its male-specific nature. Processing at all levels of the circuitry appears to be distributed. Cellular components exhibit both partial redundancy (thus conferring robustness in output) and subtle functional differences (predicted to confer acuity). Surprisingly, gender-shared cell types feature prominently in the circuitry. Male-specific components form sensory pathways that render downstream gender-shared circuits responsive to mate cues, while other male cells act to augment gender-shared cell activity. Overall, the attributes of the vulva search circuitry provide insight into principles guiding the design and operation of circuits supporting dynamic social behaviors expressed by more complex and less tractable animal species.


Assuntos
Caenorhabditis elegans/fisiologia , Animais , Caenorhabditis elegans/citologia , Quimiotaxia , Feminino , Masculino , Células Receptoras Sensoriais/fisiologia , Comportamento Sexual Animal , Vulva/fisiologia
2.
PLoS One ; 8(4): e60597, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577128

RESUMO

BACKGROUND: Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated. METHODOLOGY/PRINCIPAL FINDINGS: Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the neural circuits underlying the male's decision to initiate mating in response to contact with a mate. Mate contact is sensed by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the hermaphrodite's surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-29) in favor of the backward command cells. CONCLUSION/SIGNIFICANCE: Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring about speciation.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Colina/metabolismo , Interneurônios/metabolismo , Locomoção/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Animais , Tomada de Decisões , Feminino , Interneurônios/citologia , Masculino , Optogenética , Transmissão Sináptica , Vulva
3.
PLoS One ; 6(11): e26811, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22069471

RESUMO

BACKGROUND: In most animal species, males and females exhibit differences in behavior and morphology that relate to their respective roles in reproduction. DM (Doublesex/MAB-3) domain transcription factors are phylogenetically conserved regulators of sexual development. They are thought to establish sexual traits by sex-specifically modifying the activity of general developmental programs. However, there are few examples where the details of these interactions are known, particularly in the nervous system. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we show that two C. elegans DM domain genes, dmd-3 and mab-23, regulate sensory and muscle cell development in a male neural circuit required for mating. Using genetic approaches, we show that in the circuit sensory neurons, dmd-3 and mab-23 establish the correct pattern of dopaminergic (DA) and cholinergic (ACh) fate. We find that the ETS-domain transcription factor gene ast-1, a non-sex-specific, phylogenetically conserved activator of dopamine biosynthesis gene transcription, is broadly expressed in the circuit sensory neuron population. However, dmd-3 and mab-23 repress its activity in most cells, promoting ACh fate instead. A subset of neurons, preferentially exposed to a TGF-beta ligand, escape this repression because signal transduction pathway activity in these cells blocks dmd-3/mab-23 function, allowing DA fate to be established. Through optogenetic and pharmacological approaches, we show that the sensory and muscle cell characteristics controlled by dmd-3 and mab-23 are crucial for circuit function. CONCLUSIONS/SIGNIFICANCE: In the C. elegans male, DM domain genes dmd-3 and mab-23 regulate expression of cell sub-type characteristics that are critical for mating success. In particular, these factors limit the number of DA neurons in the male nervous system by sex-specifically regulating a phylogenetically conserved dopamine biosynthesis gene transcription factor. Homologous interactions between vertebrate counterparts could regulate sex differences in neuron sub-type populations in the brain.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios Dopaminérgicos/citologia , Músculo Esquelético/citologia , Células Receptoras Sensoriais/citologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Neurônios Dopaminérgicos/metabolismo , Feminino , Masculino , Músculo Esquelético/metabolismo , Neurotransmissores/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
4.
J Neurosci ; 31(20): 7497-510, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21593334

RESUMO

Many evolutionarily significant behaviors, such as mating, involve dynamic interactions with animate targets. This raises the question of what features of neural circuit design are essential to support these complex types of behavior. The Caenorhabditis elegans male uses 18 ray sensilla of the tail to coordinate mate apposition behavior, which facilitates a systematic search of the hermaphrodite surface for the vulva. Precisely how ray neuron types, A and B, robustly endow the male with a high degree of spatial and temporal precision is unknown. We show that the appositional postures that drive the search trajectory reflect the complex interplay of ray neuron type-induced motor outputs. Cell-type-specific ablations reveal that the A-neurons are required for all appositional postures. Their activity is instructive because the A-neurons can induce scanning- and turning-like appositional postures when artificially activated with channel rhodopsin (ChR2). B-neurons are essential only for initiation of the behavior in which they enhance male responsiveness to hermaphrodite contact. When artificially activated using ChR2, A- and B-neurons produce different tail ventral curl postures. However, when coactivated, A-neuron posture dominates, limiting B-neuron contributions to initiation or subsequent postures. Significantly, males lacking the majority of rays retain a high degree of postural control, indicating significant functional resilience in the system. Furthermore, eliminating a large number of male-specific ray neuron targets only partially attenuates tail posture control revealing that gender-common cells make an important contribution to the behavior. Thus, robustness may be a crucial feature of circuits underlying complex behaviors, such as mating, even in simple animals.


Assuntos
Caenorhabditis elegans/fisiologia , Células Receptoras Sensoriais/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Cauda/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Feminino , Masculino , Cauda/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...