Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(3): e0230572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210477

RESUMO

Chromatin structure plays a decisive role in gene regulation through the actions of transcriptional activators, coactivators, and epigenetic machinery. These trans-acting factors contribute to gene expression through their interactions with chromatin structure. In yeast INO1 activation, transcriptional activators and coactivators have been defined through intense study but the mechanistic links within these trans-acting factors and their functional implications are not yet fully understood. In this study, we examined the crosstalk within transcriptional coactivators with regard to the implications of Snf2p acetylation during INO1 activation. Through various biochemical analysis, we demonstrated that both Snf2p and Ino80p chromatin remodelers accumulate at the INO1 promoter in the absence of Snf2p acetylation during induction. Furthermore, nucleosome density and histone acetylation patterns remained unaffected by Snf2p acetylation status. We also showed that cells experience increased sensitivity to copper toxicity when remodelers accumulate at the INO1 promoter due to the decreased CUP1 expression. Therefore, our data provide evidence for crosstalk within transcriptional co-activators during INO1 activation. In light of these findings, we propose a model in which acetylation-driven chromatin remodeler recycling allows for efficient regulation of genes that are dependent upon limited co-activators.


Assuntos
Adenosina Trifosfatases/metabolismo , Metalotioneína/metabolismo , Mio-Inositol-1-Fosfato Sintase/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Adenosina Trifosfatases/genética , Sobrevivência Celular/efeitos dos fármacos , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Cobre/metabolismo , Cobre/toxicidade , Histonas/metabolismo , Metalotioneína/genética , Mio-Inositol-1-Fosfato Sintase/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Ativação Transcricional
2.
Front Neurosci ; 13: 476, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133796

RESUMO

Transcriptional activation is a highly synchronized process in eukaryotes that requires a series of cis- and trans-acting elements at promoter regions. Epigenetic modifications, such as chromatin remodeling, histone acetylation/deacetylation, and methylation, have frequently been studied with regard to transcriptional regulation/dysregulation. Recently however, it has been determined that implications in epigenetic modification seem to expand into various neurodegenerative disease mechanisms. Impaired learning and memory deterioration are cognitive dysfunctions often associated with a plethora of neurodegenerative diseases, including Alzheimer's disease. Through better understanding of the epigenetic mechanisms underlying these dysfunctions, new epigenomic therapeutic targets, such as histone deacetylases, are being explored. Here we review the intricate packaging of DNA in eukaryotic cells, and the various modifications in epigenetic mechanisms that are now linked to the neuropathology and the progression of Alzheimer's disease (AD), as well as potential therapeutic interventions.

3.
Biochem Biophys Res Commun ; 493(1): 233-239, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28899778

RESUMO

In yeast, the vacuolar proton-pumping ATPase (V-ATPase) acidifies vacuoles to maintain pH of cytoplasm. Yeast cells lacking V-ATPase activity, due to a disruption of any VMA (vacuolar membrane ATPase) gene, remain viable but demonstrate growth defects. Although it has been suggested that VMA genes are critical for phospholipid biosynthesis, the link between VMA genes and phospholipid biosynthesis is still uncertain. Here, we found that cells lacking Vma3p, one of the major V-ATPase assembly genes, had a growth defect in the absence of inositol, suggesting that Vma3p is important in phospholipid biosynthesis. Through real-time PCR, we found that cells lacking Vma3p down-regulated HXK2 expression. Furthermore, acetic acid sensitivity assay showed that cells lacking Vma3p were more sensitive to acetic acid than WT cells. HXK2 encodes hexokinase 2 which can phosphorylate glucose during phospholipid biosynthesis. Since cells lacking HXK2 are sensitive to acetic acid and this is an indicator of programmed cell death, our observations suggest that Vma3p plays an important role in programmed cell death. Taken together, we have proposed a working model to describe how Vma3p protects cells against apoptosis through the regulation of HXK2 expression.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Hexoquinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proliferação de Células/fisiologia , Saccharomyces cerevisiae/citologia
4.
Biochem Biophys Res Commun ; 491(3): 693-700, 2017 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-28756231

RESUMO

In yeast, PAH1 plays an important role in cell homeostasis and lipid biosynthesis. PAH1 encodes for the PA phosphatase, Pah1p, which is responsible for de novo TAG and phospholipid synthesis. It has been suggested that the lack of Pah1p causes irregular vacuolar morphology and dysfunctional V-ATPase pump activity. However, the molecular connection between Pah1p and V-ATPase activity has remained unclear. Through real-time PCR, we have shown that PAH1 is maximally induced at the stationary stage in the presence of inositol. We also found that vacuoles were less fragmented when PAH1 is maximally expressed. Subsequently, we observed that vacuoles from pah1Δ cells were more acidic than those in WT cells. Furthermore, V-ATPase genes were upregulated in the absence of Pah1p. These results suggest that Pah1p plays an important role in vacuolar activity by negatively regulating the expression of V-ATPase genes. As such, we provide evidence to show the role of Pah1p in vacuolar acidification and fragmentation.


Assuntos
Inositol/metabolismo , Fosfatidato Fosfatase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/química , Vacúolos/metabolismo , Regulação para Baixo/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...