Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 2(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28657072

RESUMO

Candida lusitaniae is a member of the Candida clade that includes a diverse group of fungal species relevant to both human health and biotechnology. This species exhibits a full sexual cycle to undergo interconversion between haploid and diploid forms. C. lusitaniae is also an emerging opportunistic pathogen that can cause serious bloodstream infections in the clinic and yet has often proven to be refractory to facile genetic manipulations. In this work, we develop a clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated gene 9 (Cas9) system to enable genome editing of C. lusitaniae. We demonstrate that expression of CRISPR-Cas9 components under species-specific promoters is necessary for efficient gene targeting and can be successfully applied to multiple genes in both haploid and diploid isolates. Gene deletion efficiencies with CRISPR-Cas9 were further enhanced in C. lusitaniae strains lacking the established nonhomologous end joining (NHEJ) factors Ku70 and DNA ligase 4. These results indicate that NHEJ plays an important role in directing the repair of DNA double-strand breaks (DSBs) in C. lusitaniae and that removal of this pathway increases integration of gene deletion templates by homologous recombination. The described approaches significantly enhance the ability to perform genetic studies in, and promote understanding of, this emerging human pathogen and model sexual species. IMPORTANCE The ability to perform efficient genome editing is a key development for detailed mechanistic studies of a species. Candida lusitaniae is an important member of the Candida clade and is relevant both as an emerging human pathogen and as a model for understanding mechanisms of sexual reproduction. We highlight the development of a CRISPR-Cas9 system for efficient genome manipulation in C. lusitaniae and demonstrate the importance of species-specific promoters for expression of CRISPR components. We also demonstrate that the NHEJ pathway contributes to non-template-mediated repair of DNA DSBs and that removal of this pathway enhances efficiencies of gene targeting by CRISPR-Cas9. These results therefore establish important genetic tools for further exploration of C. lusitaniae biology.

2.
Dev Cell ; 34(5): 569-76, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26343456

RESUMO

Autophagy is a conserved membrane transport pathway used to destroy pathogenic microbes that access the cytosol of cells. The intracellular pathogen Legionella pneumophila interferes with autophagy by delivering an effector protein, RavZ, into the host cytosol. RavZ acts by cleaving membrane-conjugated Atg8/LC3 proteins from pre-autophagosomal structures. Its remarkable efficiency allows minute quantities of RavZ to block autophagy throughout the cell. To understand how RavZ targets pre-autophagosomes and specifically acts only on membrane-associated Atg8 proteins, we elucidated its structure. Revealed is a catalytic domain related in fold to Ulp family deubiquitinase-like enzymes and a C-terminal PI3P-binding module. RavZ targets the autophagosome via the PI3P-binding module and a catalytic domain helix, and it preferentially binds high-curvature membranes, intimating localization to highly curved domains in autophagosome intermediate membranes. RavZ-membrane interactions enhance substrate affinity, providing a mechanism for interfacial activation that also may be used by host autophagy proteins engaging only lipidated Atg8 proteins.


Assuntos
Autofagia/fisiologia , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Fagossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Animais , Legionella , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico
3.
Curr Opin Microbiol ; 12(6): 599-607, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19892588

RESUMO

Meiosis is an integral part of sexual reproduction in eukaryotic species. It performs the dual functions of halving the genetic content in the cell, as well as increasing genetic diversity by promoting recombination between chromosome homologs. Despite extensive studies of meiosis in model yeast, it is now apparent that both the regulation of meiosis and the machinery mediating recombination have significantly diverged, even between closely related species. To highlight this, we discuss new studies on sex in Candida species, a diverse collection of hemiascomycetes that are related to Saccharomyces cerevisiae and are important human pathogens. These provide new insights into the most conserved, as well as the most plastic, aspects of meiosis, meiotic recombination, and related parasexual processes.


Assuntos
Candida/fisiologia , Meiose , Saccharomyces cerevisiae/fisiologia , Schizosaccharomyces/fisiologia , Candida/genética , Candida/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...