Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 109(24): 4050-4067.e12, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34637706

RESUMO

Inter-areal coherence between field potentials is a widespread phenomenon in cortex. Coherence has been hypothesized to reflect phase-synchronization between oscillators and flexibly gate communication according to behavioral and cognitive demands. We reveal an alternative mechanism where coherence is not the cause but the consequence of communication and naturally emerges because spiking activity in a sending area causes post-synaptic potentials both in the same and in other areas. Consequently, coherence depends in a lawful manner on power and phase-locking in the sender and connectivity. Changes in oscillatory power explained prominent changes in fronto-parietal and LGN-V1 coherence across behavioral conditions. Optogenetic experiments and excitatory-inhibitory network simulations identified afferent synaptic inputs rather than spiking entrainment as the principal determinant of coherence. These findings suggest that unique spectral profiles of different brain areas automatically give rise to large-scale coherence patterns that follow anatomical connectivity and continuously reconfigure as a function of behavior and cognition.


Assuntos
Encéfalo , Córtex Cerebral , Cognição , Comunicação
2.
Adv Sci (Weinh) ; 3(9): 1500386, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27981020

RESUMO

Selective stimulation is delivered to the sciatic nerve using different paris of contacts on a split-ring electrode, while simulatneous recordings are acquired by the neural ribbon electrodes on three different branches. Two hook electrodes are also implanted in the muscle to monitor the activated muscle responses. It shows that the high precision implantation of electrodes, increases the efficacy and reduces the incidence of side effects.

3.
Adv Mater ; 28(22): 4472-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26568483

RESUMO

A novel flexible neural ribbon electrode with a self-adaptive feature is successfully implemented for various small nerves recording. As a neural interface, the selective recording capability is characterized by having reliable signal acquisitions from the sciatic nerve and its branches such as the peroneal nerve, the tibial nerve, and the sural nerve.


Assuntos
Eletrodos , Nervo Fibular , Nervo Isquiático , Humanos , Nervo Tibial
4.
IEEE Trans Biomed Eng ; 63(3): 581-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26276980

RESUMO

This paper demonstrates flexible epineural strip electrodes (FLESE) for recording from small nerves. Small strip-shaped FLESE enables us to easily and closely stick on various sized nerves for less damage in a nerve and optimal recording quality. In addition, in order to enhance the neural interface, the gold electrode contacts were coated with carbon nanotubes, which reduced the impedance of the electrodes. We used the FLESEs to record electrically elicited nerve signals (compound neural action potentials) from the sciatic nerve in rats. Bipolar and differential bipolar configurations for the recording were investigated to optimize the recording configuration of the FLESEs. The successful results from differential bipolar recordings showed that the total length of FLESEs could be further reduced, maintaining the maximum recording ability, which would be beneficial for recording in very fine nerves. Our results demonstrate that new concept of FLESEs could play an important role in electroceuticals in near future.


Assuntos
Eletrofisiologia/instrumentação , Nanotubos de Carbono/química , Processamento de Sinais Assistido por Computador/instrumentação , Animais , Estimulação Elétrica/instrumentação , Eletrodos , Desenho de Equipamento , Feminino , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/fisiologia
5.
Muscle Nerve ; 53(5): 789-96, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26425938

RESUMO

INTRODUCTION: A long-term peripheral neural interface is an area of intense research. The use of electrode interfaces is limited by the biological response to the electrode material. METHODS: We created an electrode construct to harbor the rat sciatic nerve with interposition of autogenous adipose tissue between the nerve and the electrode. The construct was implanted for 10 weeks. RESULTS: Immunohistochemistry showed a unique laminar pattern of axonal growth layered between fibro-collagenous tissue, forming a physical interface with the tungsten micro-electrode. Action potentials transmitted across the intrerface showed mean conduction velocities varying between 6.99 ± 2.46 and 20.14 ± 4 m/s. CONCLUSIONS: We have demonstrated the feasibility of a novel peripheral nerve interface through modulation of normal biologic phenomena. It has potential applications as a chronic implantable neural interface.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Eletrodos Implantados , Microeletrodos , Tecido Nervoso/fisiologia , Condução Nervosa/fisiologia , Nervo Isquiático/fisiologia , Tecido Adiposo , Animais , Axônios/patologia , Colágeno/fisiologia , Feminino , Imuno-Histoquímica , Metais , Tecido Nervoso/crescimento & desenvolvimento , Tecido Nervoso/patologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/patologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-26736962

RESUMO

Various peripheral nerve interfaces have been developed in the last decades and transferred into neuroscientific researches or clinical applications. In this study, we present a novel flexible neural ribbon electrode that can achieve self-adaption to nerves in various diameters and have three dimensional (3D) contacts. Impedance spectroscopy of the neural ribbon electrode was carried out to determine its electrochemical characteristics during the recording. The recording capability of the neural ribbon on sciatic nerves with different diameter was demonstrated by successful signal acquisitions.


Assuntos
Nervo Isquiático/fisiologia , Animais , Materiais Biocompatíveis/química , Espectroscopia Dielétrica/métodos , Eletroquímica/métodos , Eletrodos , Desenho de Equipamento , Imageamento Tridimensional , Imidas/química , Pressão , Ratos , Ratos Sprague-Dawley , Processamento de Sinais Assistido por Computador
7.
Artigo em Inglês | MEDLINE | ID: mdl-25570451

RESUMO

Neuroprosthetic devices that interface with the nervous system to restore functional motor activity offer a viable alternative to nerve regeneration, especially in proximal nerve injuries like brachial plexus injuries where muscle atrophy may set in before nerve re-innervation occurs. Prior studies have used control signals from muscle or cortical activity. However, nerve signals are preferred in many cases since they permit more natural and precise control when compared to muscle activity, and can be accessed with much lower risk than cortical activity. Identification of nerve signals that control the appropriate muscles is essential for the development of such a `bionic link'. Here we examine the correlation between muscle and nerve signals responsible for hand grasping in the M. fascicularis. Simultaneous recordings were performed using a 4-channel thin-film longitudinal intra-fascicular electrode (tf-LIFE) and 9 bipolar endomysial muscle electrodes while the animal performed grasping movements. We were able to identify a high degree of correlation (r > 0.6) between nerve signals from the median nerve and movement-dependent muscle activity from the flexor muscles of the forearm, with a delay that corresponded to 25 m/s nerve conduction velocity. The phase of the flexion could be identified using a wavelet approximation of the ENG. This result confirms this approach for a future neuroprosthetic device for the treatment of peripheral nerve injuries.


Assuntos
Plexo Braquial/lesões , Força da Mão/fisiologia , Nervo Mediano/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular , Animais , Estimulação Elétrica , Eletrodos , Eletrodos Implantados , Macaca fascicularis , Tecido Nervoso , Condução Nervosa , Neurônios/fisiologia , Nervos Periféricos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...