Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 49(5): 3053-3066, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363391

RESUMO

BACKGROUND: Indirect detection flat-panel detectors (FPDs) consisting of hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) are a prevalent technology for digital x-ray imaging. However, their performance is challenged in applications requiring low exposure levels, high spatial resolution, and high frame rate. Emerging FPD designs using metal oxide TFTs may offer potential performance improvements compared to FPDs based on a-Si:H TFTs. PURPOSE: This work investigates the imaging performance of a new indium gallium zinc oxide (IGZO) TFT-based detector in 2D fluoroscopy and 3D cone-beam CT (CBCT). METHODS: The new FPD consists of a sensor array combining IGZO TFTs with a-Si:H photodiodes and a 0.7-mm thick CsI:Tl scintillator. The FPD was implemented on an x-ray imaging bench with system geometry emulating intraoperative CBCT. A conventional FPD with a-Si:H TFTs and a 0.6-mm thick CsI:Tl scintillator was similarly implemented as a basis of comparison. 2D imaging performance was characterized in terms of electronic noise, sensitivity, linearity, lag, spatial resolution (modulation transfer function, MTF), image noise (noise-power spectrum, NPS), and detective quantum efficiency (DQE) with entrance air kerma (EAK) ranging from 0.3 to 1.2 µGy. 3D imaging performance was evaluated in terms of the 3D MTF and noise-equivalent quanta (NEQ), soft-tissue contrast-to-noise ratio (CNR), and image quality evident in anthropomorphic phantoms for a range of anatomical sites and dose, with weighted air kerma, K w ${K_w}$ , ranging from 0.8 to 4.9 mGy. RESULTS: The 2D imaging performance of the IGZO-based FPD exhibited up to ∼1.7× lower electronic noise than the a-Si:H FPD at matched pixel pitch. Furthermore, the IGZO FPD exhibited ∼27% increase in mid-frequency DQE (1 mm-1 ) at matched pixel size and dose (EAK ≈ 1.0 µGy) and ∼11% increase after adjusting for differences in scintillator thickness. 2D spatial resolution was limited by the scintillator for each FPD. The IGZO-based FPD demonstrated improved 3D NEQ at all spatial frequencies in both head (≥25% increase for all dose levels) and body (≥10% increase for K w ${K_w}$ ≤2 mGy) imaging scenarios. These characteristics translated to improved low-contrast visualization in anthropomorphic phantoms, demonstrating ≥10% improvement in CNR and extension of the low-dose range for which the detector is input-quantum limited. CONCLUSION: The IGZO-based FPD demonstrated improvements in electronic noise, image lag, and NEQ that translated to measurable improvements in 2D and 3D imaging performance compared to a conventional FPD based on a-Si:H TFTs. The improvements are most beneficial for 2D or 3D imaging scenarios involving low-dose and/or high-frame rate.


Assuntos
Gálio , Óxido de Zinco , Imageamento Tridimensional , Índio , Imagens de Fantasmas , Raios X , Zinco
2.
J Med Imaging (Bellingham) ; 8(3): 035001, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34124283

RESUMO

Purpose: A method for fluoroscopic guidance of a robotic assistant is presented for instrument placement in pelvic trauma surgery. The solution uses fluoroscopic images acquired in standard clinical workflow and helps avoid repeat fluoroscopy commonly performed during implant guidance. Approach: Images acquired from a mobile C-arm are used to perform 3D-2D registration of both the patient (via patient CT) and the robot (via CAD model of a surgical instrument attached to its end effector, e.g; a drill guide), guiding the robot to target trajectories defined in the patient CT. The proposed approach avoids C-arm gantry motion, instead manipulating the robot to acquire disparate views of the instrument. Phantom and cadaver studies were performed to determine operating parameters and assess the accuracy of the proposed approach in aligning a standard drill guide instrument. Results: The proposed approach achieved average drill guide tip placement accuracy of 1.57 ± 0.47 mm and angular alignment of 0.35 ± 0.32 deg in phantom studies. The errors remained within 2 mm and 1 deg in cadaver experiments, comparable to the margins of errors provided by surgical trackers (but operating without the need for external tracking). Conclusions: By operating at a fixed fluoroscopic perspective and eliminating the need for encoded C-arm gantry movement, the proposed approach simplifies and expedites the registration of image-guided robotic assistants and can be used with simple, non-calibrated, non-encoded, and non-isocentric C-arm systems to accurately guide a robotic device in a manner that is compatible with the surgical workflow.

3.
J Med Imaging (Bellingham) ; 7(1): 015501, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32016135

RESUMO

We assessed interventional radiologists' task-based image quality preferences for two- and three-dimensional images obtained with a complementary metal-oxide semiconductor (CMOS) flat-panel detector versus a hydrogenated amorphous silicon (a-Si:H) flat-panel detector. CMOS and a-Si:H detectors were implemented on identical mobile C-arms to acquire radiographic, fluoroscopic, and cone-beam computed tomography (CBCT) images of cadavers undergoing simulated interventional procedures using low- and high-dose settings. Images from both systems were displayed side by side on calibrated, diagnostic-quality displays, and three interventional radiologists evaluated task performance relevant to each image and ranked their preferences based on visibility of pertinent anatomy and interventional devices. Overall, CMOS images were preferred in fluoroscopy ( p = 0.002 ) and CBCT ( p = 0.004 ), at low-dose settings ( p = 0.001 ), and for tasks associated with high levels of spatial resolution [e.g., fine anatomical details ( p = 0.006 ) and assessment of interventional devices ( p = 0.015 )]. No significant difference was found for fluoroscopic imaging tasks emphasizing temporal resolution ( p = 0.072 ), for radiography tasks ( p = 0.825 ), when using high-dose settings ( p = 0.360 ), or tasks involving general anatomy ( p = 0.174 ). The image quality preferences are consistent with reported technical advantages of CMOS regarding finer pixel size and reduced electronic noise.

4.
Med Phys ; 45(12): 5420-5436, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30339271

RESUMO

PURPOSE: Indirect-detection CMOS flat-panel detectors (FPDs) offer fine pixel pitch, fast readout, and low electronic noise in comparison to current a-Si:H FPDs. This work investigates the extent to which these potential advantages affect imaging performance in mobile C-arm fluoroscopy and cone-beam CT (CBCT). METHODS: FPDs based on CMOS (Xineos 3030HS, 0.151 mm pixel pitch) or a-Si:H (PaxScan 3030X, 0.194 mm pixel pitch) sensors were outfitted on equivalent mobile C-arms for fluoroscopy and CBCT. Technical assessment of 2D and 3D imaging performance included measurement of electronic noise, gain, lag, modulation transfer function (MTF), noise-power spectrum (NPS), detective quantum efficiency (DQE), and noise-equivalent quanta (NEQ) in fluoroscopy (with entrance air kerma ranging 5-800 nGy per frame) and cone-beam CT (with weighted CT dose index, CTDIw , ranging 0.08-1 mGy). Image quality was evaluated by clinicians in vascular, orthopaedic, and neurological surgery in realistic interventional scenarios with cadaver subjects emulating a variety of 2D and 3D imaging tasks. RESULTS: The CMOS FPD exhibited ~2-3× lower electronic noise and ~7× lower image lag than the a-Si:H FPD. The 2D (projection) DQE was superior for CMOS at ≤50 nGy per frame, especially at high spatial frequencies (~2% improvement at 0.5 mm-1 and ≥50% improvement at 2.3 mm-1 ) and was somewhat inferior at moderate-high doses (up to 18% lower DQE for CMOS at 0.5 mm-1 ). For smooth CBCT reconstructions (low-frequency imaging tasks), CMOS exhibited ~10%-20% higher NEQ (at 0.1-0.5 mm-1 ) at the lowest dose levels (CTDIw ≤0.1 mGy), while the a-Si:H system yielded slightly (~5%) improved NEQ (at 0.1-0.5 lp/mm) at higher dose levels (CTDIw ≥0.6 mGy). For sharp CBCT reconstructions (high-frequency imaging tasks), NEQ was ~32% higher above 1 mm-1 for the CMOS system at mid-high-dose levels and ≥75% higher at the lowest dose levels (CTDIw ≤0.1 mGy). Observer assessment of 2D and 3D cadaver images corroborated the objective metrics with respect to a variety of pertinent interventional imaging tasks. CONCLUSION: Measurements of image noise, spatial resolution, DQE, and NEQ indicate improved low-dose performance for the CMOS-based system, particularly at lower doses and higher spatial frequencies. Assessment in realistic imaging scenarios confirmed improved visibility of fine details in low-dose fluoroscopy and CBCT. The results quantitate the extent to which CMOS detectors improve mobile C-arm imaging performance, especially in 2D and 3D imaging scenarios involving high-resolution tasks and low-dose conditions.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Fluoroscopia/instrumentação , Metais/química , Óxidos/química , Semicondutores , Desenho de Equipamento , Humanos , Imageamento Tridimensional , Razão Sinal-Ruído
5.
Ultrasound Med Biol ; 40(4): 714-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24530261

RESUMO

The degradation of ultrasonic image quality is typically attributed to aberration and reverberation. Although the sources and impact of aberration are well understood, very little is known about the source and impact of image degradation caused by reverberation. Reverberation is typically associated with multiple reflections at two interfaces along the same propagation path, as with the arterial wall or a metal sphere. However, the reverberation that results in image degradation includes more complex interaction between the propagating wave and the tissue. Simulations of wave propagation in realistic and simplified models of the abdominal wall are used to illustrate the characteristics of coherent and diffuse clutter generated by reverberation. In the realistic models, diffuse reverberation clutter is divided into that originating from the tissue interfaces and that originating from sub-resolution diffuse scatterers. In the simplified models, the magnitude of the reverberation clutter is observed as angle and density of the connective tissue are altered. The results suggest that multi-path scattering from the connective tissue/fat interfaces is a dominant component of reverberation clutter. Diffuse reverberation clutter is maximal when the connective tissue is near normal to the beam direction and increases with the density of connective tissue layers at these large angles. The presence of a thick fascial or fibrous layer at the distal boundary of the abdominal wall magnifies the amount of reverberation clutter. The simulations also illustrate that compression of the abdominal layer, a technique often used to mitigate clutter in overweight and obese patients, increases the decay of reverberation clutter with depth. In addition, rotation of the transducer or steering of the beam with respect to highly reflecting boundaries can reduce coherent clutter and transform it to diffuse clutter, which can be further reduced using coherence-based beamforming techniques. In vivo images of the human bladder illustrate some of the reverberation effects observed in simulation.


Assuntos
Artefatos , Tecido Conjuntivo/diagnóstico por imagem , Fáscia/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/fisiologia , Animais , Simulação por Computador , Humanos , Especificidade de Órgãos/fisiologia , Espalhamento de Radiação , Som , Gordura Subcutânea/diagnóstico por imagem , Ultrassonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...