Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(5): 107, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100926

RESUMO

The current study aimed to see the effects of poloxamer P407 on the dissolution performance of hydroxypropyl methylcellulose acetate succinate (AquaSolve™ HPMC-AS HG)-based amorphous solid dispersions (ASD). A weakly acidic, poorly water-soluble active pharmaceutical ingredient (API), mefenamic acid (MA), was selected as a model drug. Thermal investigations, including thermogravimetry (TG) and differential scanning calorimetry (DSC), were conducted for raw materials and physical mixtures as a part of the pre-formulation studies and later to characterize the extruded filaments. The API was blended with the polymers using a twin shell V-blender for 10 min and then extruded using an 11-mm twin-screw co-rotating extruder. Scanning electron microscopy (SEM) was used to study the morphology of the extruded filaments. Furthermore, Fourier-transform infrared spectroscopy (FT-IR) was performed to check the intermolecular interactions of the components. Finally, to assess the in vitro drug release of the ASDs, dissolution testing was conducted in phosphate buffer (0.1 M, pH 7.4) and hydrochloric acid-potassium chloride (HCl-KCl) buffer (0.1 M, pH 1.2). The DSC studies confirmed the formation of the ASDs, and the drug content of the extruded filaments was observed to be within an acceptable range. Furthermore, the study concluded that the formulations containing poloxamer P407 exhibited a significant increase in dissolution performance compared to the filaments with only HPMC-AS HG (at pH 7.4). In addition, the optimized formulation, F3, was stable for over 3 months when exposed to accelerated stability studies.


Assuntos
Química Farmacêutica , Poloxâmero , Solubilidade , Química Farmacêutica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura Alta , Composição de Medicamentos/métodos , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos
3.
AAPS PharmSciTech ; 23(6): 223, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962264

RESUMO

Delta-9-tetrahydrocannabinol (THC) is one of the most effective antinociceptive agents used in the treatment of peripheral neuropathy. THC is highly lipophilic and susceptible to thermal and oxidative degradation. Identifying appropriate solvents in which THC is stable as well as adequately solubilized is crucial in developing topical dosage forms. Lipid solvent systems are of utmost utility and relevance for formulating highly lipophilic drugs. Hence, the objective of this project was to screen the solubility of THC in lipidic excipients, monitor THC content in the selected vehicles during stability, and study the influence of these excipients on permeation of THC across skin. The solubility of THC in liquid lipid excipients was in the range of 421 to 500 mg/g. The solubility of THC in solid lipid excipients was in the range of 250 to 750 mg/g. THC in its neat form was poorly stable, but when dissolved in lipid-based excipients, its stability improved significantly. THC in lipid excipients was more stable at 4 ± 3°C compared to samples stored at 25 ± 2°C. The antioxidants (butylated hydroxytoluene and ascorbyl palmitate) used in the excipients further improved the stability of THC. The results demonstrated that the liquid and solid lipid excipients used in the study could solubilize THC freely and mitigate the degradation of THC significantly. The binary combination of lipid excipients enhanced THC skin permeation and retention, demonstrating the potential for topical formulation development of THC.


Assuntos
Dronabinol , Excipientes , Lipídeos , Pele , Solubilidade
4.
AAPS PharmSciTech ; 23(1): 63, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091878

RESUMO

Efinaconazole is the first azole derivative approved by FDA for the topical treatment of onychomycosis. The objective of present study was to develop and validate HPLC method for estimation of efinaconazole in ex vivo human nail permeation study samples. The chromatographic analysis was performed on a HPLC system equipped with diode array detector. The efinaconazole and internal standard (IS) were extracted from the human nail samples by using the protein precipitation method. The samples were injected on to 5 µm Polar C18 100Å, 4.6 mm × 150 mm column. The mobile phase consisted of 0.01 M potassium dihydrogen phosphate: acetonitrile (36:64) and eluent was monitored at 205 nm. The chromatographic separation of drug and analyte was achieved using isocratic elution at flow rate of 1 mL/min with a total run time of 15 min. The efinaconazole and IS were eluted at 6.4 ± 0.5 and 8.3 ± 0.5 min, respectively. The developed method was validated as per FDA guidelines, and the results met with acceptance criteria. The method developed was specific, and the analyte concentrations were linear at range of 50 to 10000 ng/mL (R2 ≥ 0.9981). The validated HPLC method was applied for quantifying efinaconazole in human nail permeation study samples. The permeation of efinaconazole was increased by twofolds with Labarfac CC (15135.4 ± 2233.9 ng/cm2) compared to formulations containing Transcutol P (6892.0 ± 557.6 ng/cm2) and Labrasol (7266.1 ± 790.6 ng/cm2). The study results demonstrate that developed efinaconazole HPLC method can be employed for formulation evaluation and clinical studies.


Assuntos
Onicomicose , Triazóis , Cromatografia Líquida de Alta Pressão , Humanos , Unhas , Onicomicose/tratamento farmacológico
5.
Int J Pharm ; 593: 120104, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33278495

RESUMO

Microneedles are being widely explored for dermal delivery of macromolecules. They have the capability and the potential for entrapping enzymes such as lysozyme within a polymeric matrix that do not alter the protein integrity, enable a bolus or a sustained release. In this study, polymeric microneedles have been used to entrap lysozyme (14 kDa) using biodegradable and dissolving polymers such as Polyvinylpyrrolidone (PVP), Hyaluronic acid (HA), and Poly lactic co glycolic acid (PLGA). Microneedles were fabricated using mold casting technique. The structural strength was determined using texture analyzer where PLGA microneedles (16.56 ± 0.23 g) required a significantly higher puncture force as compared to PVP and HA microneedles (12.10 ± 0.04 g and 11.40 ± 0.32 g respectively). The release profile showed an instantaneous release in the case of PVP and HA with almost 50% of the drug released within the first 20 min in both cases and remaining drug was released within the next 2 h whereas Lysozyme entrapped in PLGA showed a release of 29.53 ± 0.78% of lysozyme 72 h. Lysozyme entrapped in microneedles was characterized using circular dichroism and SDS-page analysis for structural stability post microneedle fabrication. The stability studies were performed on these polymeric microneedles for understanding its delivery potential of bio-active lysozyme. At the end of 90 days lysozyme concentration entrapped was 90.35 ± 0.06% 93.76 ± 0.34% 91.74 ± 0.37% for PVP, HA and PLGA respectively. The protein integrity remained intact for three months (α + ß) sheets remained intact in the three different polymeric microneedles. The enzyme assay showed that the enzyme entrapped inside microneedles is biologically active and could be used to lyse bacterial infections for dermal applications. However, a detailed analysis of protein formulations would be useful for extending microneedles applications in wounds, skin infections.


Assuntos
Muramidase , Pele , Sistemas de Liberação de Medicamentos , Microinjeções , Agulhas , Polímeros
6.
AAPS PharmSciTech ; 21(7): 273, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33030634

RESUMO

The use of hot-melt extrusion (HME) technique in the preparation of semi-solid products offers several advantages over conventional processes. However, the optimization of the technique for preparation of semi-solid pharmaceuticals is challenging due to involvement of ingredients with different physical properties. Hence, a simple tool to optimize the mixing of ingredients that results in a target ratio and drug content uniformity is utmost important. In this study, a handheld colorimeter has been explored to optimize the process variables of twin screw processor for preparation of hydrophilic PEG-based ointment. The process parameters which were optimized with use of handheld colorimeter have been used for preparation of polyethylene glycol-based metronidazole ointment. The metronidazole ointment prepared by twin screw processor was compared with commercially available metronidazole gel for in vitro release testing and ex vivo permeation. The flux, ex vivo bioavailability, and Tmax of polyethylene glycol-based metronidazole ointment was found to be similar to that of marketed metronidazole gel.


Assuntos
Antibacterianos/química , Composição de Medicamentos/métodos , Tecnologia de Extrusão por Fusão a Quente/métodos , Metronidazol/química , Pomadas , Disponibilidade Biológica , Congelamento , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...