Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 1): 114498, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209791

RESUMO

The fungal symbiosis with the plant root system is importantly recognized as a plant growth promoting fungi (PGPFs), as well as elicitor of plant defence against different biotic and abiotic stress conditions. Thus PGPFs are playing as a key trouper in enhancing agricultural quality and increased crop production and paving a way towards a sustainable agriculture. Due to increased demand of food production, the over and unscientific usage of chemical fertilizers has led to the contamination of soil by organic and inorganic wastes impacting on soil quality, crops quality effecting on export business of agricultural products. The application of microbial based consortium like plant growth promoting fungi is gaining worldwide importance due to their multidimensional activity. These activities are through plant growth promotion, induction of systemic resistance, disease combating and detoxification of organic and inorganic toxic chemicals, a heavy metal tolerance ability. The master key behind these properties exhibited by PGPFs are attributed towards various secretory biomolecules (secondary metabolites or enzymes or metabolites) secreted by the fungi during interaction mechanism. The present review is focused on the multidimensional role PGPFs as elicitors of Induced systemic resistance against phytopathogens as well as heavy metal detoxifier through seed biopriming and biofortification methods. The in-sights on PGPFs and their probable mechanistic nature contributing towards plants to withstand heavy metal stress and stress alleviation by activating of various stress regulatory pathways leading to secretion of low molecular weight compounds like organic compounds, glomalin, hydrophobins, etc,. Thus projecting the importance of PGPFs and further requirement of research in developing PGPFs based molecules and combining with trending Nano technological approaches for enhanced heavy metal stress alleviations in plant and soil as well as establishing a sustainable agriculture.


Assuntos
Metais Pesados , Solo , Biodegradação Ambiental , Secretoma , Metais Pesados/toxicidade , Produtos Agrícolas/metabolismo , Sementes/metabolismo , Fungos
2.
Int J Biol Macromol ; 220: 223-237, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35970370

RESUMO

The present study evaluated the priming efficacy of chitosan and chitosan-derived nanoparticles (CNPs) against bacterial wilt of tomato. In the current study, seed-treated CNPs plus pathogen-inoculated tomato seedlings recorded significant protection of 62 % against pathogen-induced wilt disease and subsequently better growth. The induced resistance was witnessed by a prominent increase in lignin, callose and H2O2 deposition, followed by superoxide radical accumulation in leaves. Additionally, chitosan and CNPs-treated tomato plants recorded a remarkable increase in the upregulation of phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), catalase (CAT) and ß-1, 3 glucanase (GLU) in comparison with untreated plants. The chitosan and CNPs-induced antioxidant enzymes were positively correlated with the stimulation of corresponding gene expression in CNPs treated plants related to pathogen-inoculated ones. The results of this study describe that how the application of chitosan and CNPs elicit defense responses at the cellular, biochemical and gene expression in tomato plants against bacterial wilt disease, thereby improve growth and yield.


Assuntos
Quitosana , Nanopartículas , Solanum lycopersicum , Antioxidantes/metabolismo , Catalase/genética , Catalase/metabolismo , Catecol Oxidase/metabolismo , Quitosana/metabolismo , Quitosana/farmacologia , Peróxido de Hidrogênio/metabolismo , Imunidade , Lignina/metabolismo , Solanum lycopersicum/microbiologia , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/microbiologia , Superóxidos/metabolismo
3.
Sci Rep ; 9(1): 15175, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645602

RESUMO

In this case study, the mycelium growth of Sclerospora graminicola in the infected tissues of pearl millet and the process of sporulation and liberation of sporangia and zoospores were observed using four different microscopic techniques. The cotton blue-stained samples observed under light microscope revealed the formation of zoospores with germ tubes, appressoria and initiation of haustorium into the host cells, while the environmental scanning electron microscopy showed the rapid emergence of sporangiophores with dispersed sporangia around the stomata. For fluorescence microscopy, the infected leaf samples were stained with Fluorescent Brightener 28 and Calcofluor White, which react with ß-glucans present in the mycelial walls, sporangiophores and sporangia. Calcoflour White was found to be the most suitable for studying the structural morphology of the pathogen. Therefore, samples observed by confocal laser scanning microscopy (CLSM) were pre-treated with Calcofluor White, as well as with Syto-13 that can stain the cell nuclei. Among the four microscopic techniques, CLSM is ideal for observing live host-pathogen interaction and studying the developmental processes of the pathogen in the host tissues. The use of different microscopic bioimaging techniques to study pathogenesis will enhance our understanding of the morphological features and development of the infectious propagules in the host.


Assuntos
Imageamento Tridimensional , Microscopia , Pennisetum/microbiologia , Peronospora/citologia , Bioensaio , Sobrevivência Celular , Pennisetum/ultraestrutura , Peronospora/ultraestrutura , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia
4.
Sci Rep ; 7(1): 2612, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572579

RESUMO

Trichoderma spp. are well known biocontrol agents used against phytopathogens. In the present work Trichoderma-mediated Selenium nanoparticles (SeNPs) were synthesized and extent of downy mildew (DM) disease control in pearl millet (PM) was studied. Six species of Trichoderma namely, T. asperellum, T. harzianum, T. atroviride, T. virens, T. longibrachiatum and T. brevicompactum were evaluated in the form of culture filtrate (CF), cell lysate (CL) and crude cell wall (CW) to synthesize SeNPs. All these components produced SeNPs, but CF was significant than CL and CW. The size of SeNPs ranged from 49.5 to 312.5 nm with zeta potential of +3.3 mv to -200 mv. The nanoparticles suppressed the growth, sporulation and zoospore viability of Sclerospora graminicola and these biological activities were inversely proportional to the size of SeNPs. Under greenhouse conditions, application of SeNPs and T. asperellum together enhanced the early plant growth and suppressed DM incidence as compared to their individual application. This study demonstrated the ability of Trichogenic-SeNPs to suppress growth and proliferation of S. graminicola, the incitant of DM of PM and their activity is inversely proportional to size of nanoparticles.


Assuntos
Nanopartículas/química , Pennisetum/efeitos dos fármacos , Peronospora/patogenicidade , Doenças das Plantas/prevenção & controle , Selênio/química , Trichoderma/química , Tamanho da Partícula , Pennisetum/microbiologia , Doenças das Plantas/microbiologia , Sementes/efeitos dos fármacos , Sementes/microbiologia
5.
Plant Physiol Biochem ; 105: 109-117, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27093114

RESUMO

Pearl millet (Pennisetum glaucum) stands sixth among the most important cereal crops grown in the semi-arid and arid regions of the world. The downy mildew disease caused by Sclerospora graminicola, an oomycete pathogen, has been recognized as a major biotic constraint in pearl millet production. On the other hand, basidiomycetes are known to produce a large number of antimicrobial metabolites, providing a good source of anti-oomycete agrochemicals. Here, we report the discovery and efficacy of a compound, named G_app7, purified from Ganoderma applanatum on inhibition of growth and development of S. graminicola, as well as the effects of seed treatment with G_app7 on protection of pearl millet from downy mildew. G_app7 consistently demonstrated remarkable effects against S. graminicola by recording significant inhibition of sporangium formation (41.4%), zoospore release (77.5%) and zoospore motility (91%). Analyses of G_app7 compound using two-dimensional nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry revealed its close resemblance to metominostrobin, a derivative of strobilurin group of fungicides. Furthermore, the G_app7 was shown to stably maintain the inhibitory effects at different temperatures between 25 and 80 °C. In addition, the anti-oomycete activity of G_app7 was fairly stable for a period of at least 12 months at 4 °C and was only completely lost after being autoclaved. Seed treatment with G_app7 resulted in a significant increase in disease protection (63%) under greenhouse conditions compared with water control. The identification and isolation of this novel and functional anti-oomycete compound from G. applanatum provide a considerable agrochemical importance for plant protection against downy mildew in an environmentally safe and economical manner.


Assuntos
Produtos Biológicos/farmacologia , Resistência à Doença , Ganoderma/metabolismo , Pennisetum/imunologia , Pennisetum/microbiologia , Peronospora/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Produtos Biológicos/isolamento & purificação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida , Cromatografia em Camada Fina , Resistência à Doença/efeitos dos fármacos , Espectrometria de Massas , Pennisetum/efeitos dos fármacos , Peronospora/efeitos dos fármacos , Peronospora/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Espectroscopia de Prótons por Ressonância Magnética , Esporos/efeitos dos fármacos , Temperatura
6.
Mol Biol Rep ; 43(3): 117-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26842722

RESUMO

Downy mildew caused by Sclerospora graminicola is a devastating disease of pearl millet. Based on candidate gene approach, a set of 22 resistance gene analogues were identified. The clone RGPM 301 (AY117410) containing a partial sequence shared 83% similarity to rice R-proteins. A full-length R-gene RGA RGPM 301 of 3552 bp with 2979 bp open reading frame encoding 992 amino acids was isolated by the degenerate primers and rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR) approach. It had a molecular mass of 113.96 kDa and isoelectric point (pI) of 8.71. The sequence alignment and phylogenetic analysis grouped it to a non-TIR NBS LRR group. The quantitative real-time PCR (qRT-PCR) analysis revealed higher accumulation of the transcripts following inoculation with S. graminicola in the resistant cultivar (IP18296) compared to susceptible cultivar (7042S). Further, significant induction in the transcript levels were observed when treated with abiotic elicitor ß-aminobutyric acid (BABA) and biotic elicitor Pseudomonas fluorescens. Exogenous application of phytohormones jasmonic acid or salicylic acid also up-regulated the expression levels of RGA RGPM 301. The treatment of cultivar IP18296 with mitogen-activated protein kinase (MPK) inhibitors (PD98059 and U0126) suppressed the levels of RGA RGPM 301. A 3.5 kb RGA RGPM 301 which is a non-TIR NBS-LRR protein was isolated from pearl millet and its up-regulation during downy mildew interaction was demonstrated by qRT-PCR. These studies indicate a role for this RGA in pearl millet downy mildew interaction.


Assuntos
Resistência à Doença , Oomicetos , Pennisetum/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Aminobutiratos/farmacologia , Proteínas de Bactérias , Sequência de Bases , Cenchrus/efeitos dos fármacos , Cenchrus/metabolismo , Cenchrus/microbiologia , Cenchrus/fisiologia , Clonagem Molecular , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Oxilipinas/farmacologia , Pennisetum/metabolismo , Pennisetum/microbiologia , Pennisetum/fisiologia , Filogenia , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Pseudomonas fluorescens , Ácido Salicílico/farmacologia , Alinhamento de Sequência , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...