Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36772532

RESUMO

Enhanced equalization phase noise (EEPN), generated from the uncompensated dispersion experienced by laser phase noises, can cause serious damage to the transmission quality of optical fiber systems. In this work, the performance of a wideband Nyquist-spaced long-haul nonlinear optical fiber communication systems suffering from EEPN is investigated and discussed through split-step numerical simulations and analytical models based on the perturbation analysis, in the cases of digital nonlinearity compensation (NLC) and electronic dispersion compensation (EDC). The efficiency and the accuracy of the analytical models were validated via simulations, considering the different symbol rates and modulation formats. The performance of the C-band transmission was comprehensively studied based on the model. Our results reveal that the growth of symbol rates and transmission distances aggravates the distortions in the C-band system.

2.
Opt Express ; 30(11): 19320-19331, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221713

RESUMO

Maximized information rates of ultra-wideband (typically, beyond 100~nm modulated bandwidth) lumped-amplified fiber-optic communication systems have been thoroughly examined accounting for the wavelength dependencies of optical fiber parameters in conjunction with the impact of the inelastic inter-channel stimulated Raman scattering (SRS). Three strategies to maximize point-to-point link throughput were proposed: optimizations of non-uniformly and uniformly distributed launch power per channel and the optimization based on adjusting to the target 3 dB ratio between the power of linear amplified spontaneous emission and nonlinear interference noise. The results clearly emphasize the possibility to approach nearly optimal system performance by means of implementing pragmatic engineering sub-optimal optimization strategies.

3.
Opt Express ; 29(11): 17428-17439, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154286

RESUMO

Achievable information rates of optical communication systems are inherently limited by nonlinear distortions due to the Kerr effect occurred in optical fibres. These nonlinear impairments become more significant for communication systems with larger transmission bandwidths, closer channel spacing and higher-order modulation formats. In this paper, the efficacy of nonlinearity compensation techniques, including both digital back-propagation and optical phase conjugation, for enhancing achievable information rates in lumped EDFA- and distributed Raman-amplified fully-loaded C -band systems is investigated considering practical transceiver limitations. The performance of multiple modulation formats, such as dual-polarisation quadrature phase shift keying (DP-QPSK), dual-polarisation 16 -ary quadrature amplitude modulation (DP-16QAM), DP-64QAM and DP-256QAM, has been studied in C -band systems with different transmission distances. It is found that the capabilities of both nonlinearity compensation techniques for enhancing achievable information rates strongly depend on signal modulation formats as well as target transmission distances.

4.
Sci Rep ; 7(1): 12986, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021614

RESUMO

Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.

5.
Opt Express ; 25(21): 25353-25362, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041203

RESUMO

The optimisation of span length when designing optical communication systems is important from both performance and cost perspectives. In this paper, the optimisation of inter-amplifier spacing and the potential increase of span length at fixed information rates in optical communication systems with practically feasible nonlinearity compensation schemes have been investigated. It is found that in DP-16QAM, DP-64QAM and DP-256QAM systems with practical transceiver noise limitations, single-channel digital backpropagation can allow a 50% reduction in the number of amplifiers without sacrificing information rates compared to systems with optimal span lengths and linear compensation.

6.
Opt Lett ; 42(17): 3351-3354, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957102

RESUMO

An analytical model considering modulation-dependent nonlinear effects and second-order interactions between signal and optical amplifier noise is presented for Nyquist-spaced wavelength-division-multiplexing optical communication systems. System performance of dual-polarization modulation formats, such as DP-QPSK, DP-16QAM, and DP-64QAM, is investigated using both the analytical model and numerical simulations. A good agreement between analytical and numerical results shows that, in the case of full-field nonlinearity compensation, accounting for second-order interactions becomes essential to predict system performance of both single- and multi-channel systems at optimum launched powers and beyond. This effect is validated via numerical simulations for signal bandwidths up to ∼1 THz.

7.
Opt Express ; 25(4): 3311-3326, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241546

RESUMO

The relationship between modulation format and the performance of multi-channel digital back-propagation (MC-DBP) in ideal Nyquist-spaced optical communication systems is investigated. It is found that the nonlinear distortions behave independent of modulation format in the case of full-field DBP, in contrast to the cases of electronic dispersion compensation and partial-bandwidth DBP. It is shown that the minimum number of steps per span required for MC-DBP depends on the chosen modulation format. For any given target information rate, there exists a possible trade-off between modulation format and back-propagated bandwidth, which could be used to reduce the computational complexity requirement of MC-DBP.

8.
Opt Lett ; 42(1): 121-124, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28059193

RESUMO

Achievable information rates (AIRs) of wideband optical communication systems using a ∼40 nm (∼5 THz) erbium-doped fiber amplifier and ∼100 nm (∼12.5 THz) distributed Raman amplification are estimated based on a first-order perturbation analysis. The AIRs of each individual channel have been evaluated for DP-64QAM, DP-256QAM, and DP-1024QAM modulation formats. The impact of full-field nonlinear compensation (FF-NLC) and probabilistically shaped constellations using a Maxwell-Boltzmann distribution were studied and compared to electronic dispersion compensation. It has been found that a probabilistically shaped DP-1024QAM constellation, combined with FF-NLC, yields achievable information rates of ∼75 Tbit/s for the EDFA scheme and ∼223 Tbit/s for the Raman amplification scheme over a 2000 km standard single-mode fiber transmission.

9.
Philos Trans A Math Phys Eng Sci ; 374(2062)2016 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-26809572

RESUMO

Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...