Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 30(23): 234004, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30780145

RESUMO

We used x-ray photoemission and absorption spectroscopies to study the influence of thermal molecular oxygen exposure on the h-BN/Co(0001) and h-BN/Au/Co(0001) systems. The spectral analysis was supported by density functional theory calculations. It is shown that oxygen can intercalate h-BN on Co(0001) and also be embedded into its lattice, replacing the nitrogen atoms. Upon substitution, the structures containing one (BN2O) and three (BO3) oxygen atoms in the boron atom environment are formed predominantly. In the case of gold-intercalated h-BN, only the (BN2O) structures are formed; the long-lasting oxygen exposures lead to etching of the h-BN layer.

2.
Nanoscale ; 10(25): 12123-12132, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29915820

RESUMO

Recrystallization of bulk materials is a well-known phenomenon, which is widely used in commercial manufacturing. However, for low-dimensional materials like graphene, this process still remains an unresolved puzzle. Thus, the understanding of the underlying mechanisms and the required conditions for recrystallization in low dimensions is essential for the elaboration of routes towards the inexpensive and reliable production of high-quality nanomaterials. Here, we unveil the details of the efficient recrystallization of one-atom-thick pure and boron-doped polycrystalline graphene layers on a Co(0001) surface. By applying photoemission and electron diffraction, we show how more than 90% of the initially misoriented graphene grains can be reconstructed into a well-oriented and single-crystalline layer. The obtained recrystallized graphene/Co interface exhibits high structural quality with a pronounced sublattice asymmetry, which is important for achieving an unbalanced sublattice doping of graphene. By exploring the kinetics of recrystallization for native and B-doped graphene on Co, we were able to estimate the activation energy and propose a mechanism of this process.

3.
ACS Nano ; 11(6): 6336-6345, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28494148

RESUMO

Regardless of the widely accepted opinion that there is no Raman signal from single-layer graphene when it is strongly bonded to a metal surface, we present Raman spectra of a graphene monolayer on Ni(111) and Co(0001) substrates. The high binding energy of carbon to these surfaces allows formation of lattice-matched (1 × 1) structures where graphene is significantly stretched. This is reflected in a record-breaking shift of the Raman G band by more than 100 cm-1 relative to the case of freestanding graphene. Using electron diffraction and photoemission spectroscopy, we explore the aforementioned systems together with polycrystalline graphene on Co and analyze possible intercalation of oxygen at ambient conditions. The results obtained are fully supported by Raman spectroscopy. Performing a theoretical investigation of the phonon dispersions of freestanding graphene and stretched graphene on the strongly interacting Co surface, we explain the main features of the Raman spectra. Our results create a reliable platform for application of Raman spectroscopy in diagnostics of chemisorbed graphene and related materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...