Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(4): 1410-1419, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36480018

RESUMO

BACKGROUND: The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a notorious agricultural pest and the effective vector of many plant viruses worldwide. Cucurbit chlorotic yellows virus (CCYV), exclusively transmitted by B. tabaci in a semipersistent manner, is a serious causal agent in cucurbit crops in many countries. Plant viruses can manipulate the behaviors of insect vectors to promote the spread of themselves, but underlying mechanisms are remaining unclear. RESULTS: In this study, our observations indicated that B. tabaci, when carrying CCYV, oriented more actively to the host plant cucumber. Transcriptome analysis and quantitative polymerase chain reaction with reverse transcription analysis showed that the odorant-binding protein 5 (OBP5) was upregulated with viral acquisition. Sequence and phylogenetic analysis showed that BtabOBP5 was highly homologous with nine OBPs from other hemipteran insects. In addition, OBP5-silenced whiteflies significantly altered their orientation behavior towards cucumber plants and towards some typical volatile organic compounds released from cucumbers. CONCLUSION: This study described a novel mechanism by which the olfactory system of vector insects could be regulated by a semipersistent plant virus, thereby affecting insect olfactory behavior and relationship with host plants. These results provided a basis for developing potential olfaction-based pest management strategies in the future. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Crinivirus , Cucumis sativus , Hemípteros , Receptores Odorantes , Animais , Produtos Agrícolas , Hemípteros/genética , Hemípteros/virologia , Filogenia , Doenças das Plantas/virologia , Olfato
2.
Int J Biol Macromol ; 226: 1154-1165, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36427615

RESUMO

Specificity and efficiency of plant virus transmission depend largely on protein-protein interactions of vectors and viruses. Cucurbit chlorotic yellows virus (CCYV), transmitted specifically by tobacco whitefly, Bemisia tabaci, in a semi-persistent manner, has caused serious damage on cucurbit and vegetable crops around the world. However, the molecular mechanism of interaction during CCYV retention and transmission are still lacking. CCYV was proven to bind particularly to the whitefly foregut, and here, we confirmed that the minor coat protein (CPm) of CCYV is participated in the interaction with the vector. In order to identify proteins of B. tabaci that interact directly with CPm of CCYV, the immunoprecipitation (IP) assay and DUALmembrane cDNA library screening technology were applied. The cytochrome c oxidase subunit 5A (COX), tubulin beta chain (TUB) and keratin, type I cytoskeletal 9-like (KRT) of B. tabaci shown strong interactions with CPm and are closely associated with the retention within the vector and transmission of CCYV. These findings on whitefly protein-CCYV CPm interactions are crucial for a much better understanding the mechanism of semi-persistent plant virus transmission by insect vectors, as well as for implement new strategies for effective management of plant viruses and their vector insects.


Assuntos
Crinivirus , Hemípteros , Animais , Capsídeo/metabolismo , Hemípteros/metabolismo , Vírion , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Crinivirus/genética , Crinivirus/metabolismo , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...