Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932741

RESUMO

Unsatisfactory mechanical and antibacterial properties restricted the solo use of chitosan (CS) as a wound dressing. In this work, a novel CS/hydroxyapatite/ZIF-8 (CS/HAp/ZIF-8, CHZ-10) porous membrane was facilely constructed by in situ loading of ZIF-8 on CS/HAp. The advantages of the three compositions were rationally integrated, and the multifunctionality and practicality of this CS-based dressing were improved. HAp not only improved the mechanical strength and stability of CS, but also promoted cell proliferation and accelerated hemostasis with its released Ca2+. Meanwhile, ZIF-8 enhanced the antibacterial activity of CS by releasing antibacterial Zn2+ in a pH-responsive and sustainable manner, avoiding the bio-accumulation toxicity of heavy metals. Compared with CS/HAp and conventionally used gauze, CHZ-10 exhibited superior coagulation and hemolytic ability, as well as outstanding antibacterial activity against E. coli and S. aureus. Besides, both in vivo observation and histological evaluation demonstrated that CHZ-10 could not only effectively inhibit bacterial infection and reduce inflammation of the wound, but also promote its re-epithelialization, granulation, tissue formation and collagen fibre growth, leading to effectively enhanced wound-healing. This work provides a new method for the easy construction of multifunctional antibacterial dressings based on CS, showing promise for application in clinical wound care.

2.
Inorg Chem ; 62(45): 18573-18582, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37917528

RESUMO

Simple and rapid synthesis of multifunctional metal-organic frameworks (MOFs) at room temperature (RT) with their multifunction controllable is still appealing for further expansion of the practical applications of MOFs. Herein, in this work, rapid RT synthesis of a multifunctional UiO-66(Ce) [M-UiO-66(Ce)] with both oxidase-like activity and fluorescence emission properties was facilely achieved within 15 min through a straightforward reactant concentration modulation and self-catalytic postmodification strategy. Appropriate concentrations of cerium ammonium nitrate or 1,4-benzenedicarboxylic acid (BDC) were beneficial for the synthesis of UiO-66(Ce) with better crystallization. During the postmodification process, through regulation of the self-photocatalysis of UiO-66(Ce), a high conversion rate from BDC to BDC-OH of up to 14% can be obtained, resulting in a significantly enhanced fluorescence signal of M-UiO-66(Ce) within 2 min. Moreover, M-UiO-66(Ce) enabled the accurate and reliable detection of tetracycline (TC) in real samples. Besides, the colorimetric and fluorescence modes complemented each other, expanding the linear range of TC detection and exhibiting its great potential for practical applications. This work provides new insights for the convenient and rapid synthesis of multifunctional materials based on MOFs, which is favorable for promoting the large-scale preparation of MOFs and their practical application in on-site environmental pollutant sensing.


Assuntos
Compostos Heterocíclicos , Estruturas Metalorgânicas , Tetraciclina , Antibacterianos , Catálise
3.
Anal Chem ; 95(20): 8137-8144, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37167590

RESUMO

Developing a novel strategy for the sensitive and rapid detection of pathogenic bacterial spores in field or on-site settings will be helpful in minimizing their potential threats to human health, environmental safety, and food safety. In this study, Tb3+ was combined with glutathione (GSH)-modified copper nanoclusters (CuNCs), and an aggregation-induced emission (AIE) fluorescent probe based on Tb-GSH-CuNCs was fabricated for dipicolinic acid (DPA, a pathogenic bacterial spore marker) sensing. Making use of the competitive binding of Tb3+ between GSH-CuNCs and DPA, a multicolor sensing of DPA was facilely realized without introducing fluorescent materials as the reference. Due to an "off-on" response mechanism of the AIE fluorescent probe, this multicolor response to DPA exhibited a feature of rich color gradients and highly discriminative color change, allowing a dosage-sensitive visual quantification of DPA. The DPA with a concentration even as low as 0.5 µM can still be identified by the naked eye. Moreover, together with a smartphone app, which can extract the R (red), G (green), and B (blue) values from the probe system, a portable platform can be established for sensitive DPA quantification in the range of 0.5-70 µM, showing great potential for the practical monitoring of DPA in field or on-site settings.


Assuntos
Corantes Fluorescentes , Esporos Bacterianos , Humanos
4.
Food Chem ; 417: 135883, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921364

RESUMO

Sensitive and visual determination of fluoroquinolone antibiotics (FQs) is of great significance since their abuse and inappropriate handling can be problematic. Herein, we propose a lanthanide covalent organic framework fluorescence sensing system (Tb@COF-Ru) with visualization capability to determine the FQs level, where Tb@COF was employed as the sensing probe, while the red-emitting Ru(bpy)32+ serves as a constant red fluorescent background. With increasing norfloxacin concentration, the green fluorescence of Tb3+ is gradually enhanced, finally realizing the multicolor fluorescence change from red to green. With a smartphone for RGB analysis, visual monitoring and quantitative analysis were realized without any sophisticated instrument. Limits of detection for the fluorescence quantitative and visual mode for norfloxacin were 0.33 nM and 7.3 µM, respectively. This method was rapid (1 min) and visualized, providing a simple analysis of various food matrices (honey, milk, egg and beef) and water samples for trace FQs.


Assuntos
Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Animais , Bovinos , Norfloxacino , Térbio , Espectrometria de Fluorescência , Corantes Fluorescentes
5.
J Hazard Mater ; 338: 241-249, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28570878

RESUMO

The unique characteristics of Chitosan (CS) such as resource abundance, good biocompatibility, film-forming ability and sufficient sites (NH2 and OH) for adsorption of heavy metals or organic pollutants make CS-based membranes a promising membrane adsorbent. In this work, a porous Chitosan/Hydroxyapatite (CS/HA) membrane with a sponge-like surface and a three-dimensional interpenetrated porous structure of about mean pore size less than 10µm was developed. The most striking advantage of the proposed membrane lies on the integration of appreciably high adsorption capacity (as compared with current CS-based membranes, also 2.5 times and 4 times higher than that of non-porous CS/HA membrane and the commercially available activate carbon) and the high-speed dynamic dye removal (98% or even better in less than 15min). Besides, the synthesis protocol for the proposed membrane is also much simpler, environmental-friendly and economical. Moreover, the proposed membrane also featured repeated dye removal (above 80% after 5 cycles of dynamic adsorption at dye concentration of 150mgL-1). All the above advantages indicated the intriguing potential of the porous membrane in practical wastewater treatment.


Assuntos
Quitosana/química , Corantes/isolamento & purificação , Durapatita/química , Membranas Artificiais , Águas Residuárias/química , Poluentes Químicos da Água/química , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Porosidade , Soluções , Espectrofotometria Ultravioleta , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...