Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(73): 10960-10963, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37608715

RESUMO

Enantiomers of Tröger's base-based [3]arenes R6N-E[3] and S6N-E[3] were synthesized successfully as two optically pure Tröger's base-based macrocycles in which three Tröger's base subunits were incorporated. Among these Tröger's base-based[3]arenes, M[3] showed high absorption of iodine up to 4.02 g g-1 in vapor.

2.
Chemistry ; 29(35): e202300410, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37040133

RESUMO

Cuboid, a basic geometric structure, has been widely applied in architecture and mathematics. In chemistry, the introduction of cuboid structures always provides a specific structural shape, enhances the stability of the structure and improves the performance of materials. Herein, a simple strategy exploiting self-discrimination to construct a cuboid-stacking crystal material is proposed, in which a chiral macrocycle (TBBP) based on Tröger's base (TB) and benzophenone (BP) was synthesized as the building element of the cuboid. The cuboid is designed to be transformable compared with cuboid structures in previous work. For this reason, it is considered that the cuboid-stacking structure can be transformed through external stimulation. Iodine vapor is selected as the external stimulus to transform the cuboid-stacking structure due to the favorable interaction between iodine and the cuboid. The changes in the stacking mode of TBBP is studied by single-crystal X-ray diffraction (SCXRD) and powder X-ray diffraction (PXRD). To our surprise, this Tröger's base-based cuboid shows strong iodine adsorption capacity up to 3.43 g g-1 and exhibits potential as a crystal material for iodine adsorption.


Assuntos
Gases , Iodo , Adsorção , Cristalografia por Raios X , Difração de Raios X
3.
Nat Commun ; 14(1): 590, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737437

RESUMO

Controlling molecular motion is one of hot topics in the field of chemistry. Molecular rotors have wide applications in building nanomachines and functional materials, due to their controllable rotations. Hence, the development of novel rotor systems, controlled by external stimuli, is desirable. Pillar[n]arenes, a class of macrocycles, have a unique planar chirality, in which two stable conformational isomers pR and pS would interconvert by oxygen-through-the-annulus rotations of their hydroquinone rings. We observe the differential kinetic traits of planar chirality transformation in sodium carboxylate pillar[5]arene (WP5-Na) and ammonium carboxylate pillar[5]arene (WP5-NH4), which inspire us to construct a promising rotary platform in anionic pillar[5]arenes (WP5) skeletons. Herein, we demonstrate the non-negligible effect of counter cations on rotational barriers of hydroquinone rings in WP5, which enables a cation grease/brake rotor system. Applications of this tunable rotor system as fluorescence switch and anti-counterfeiting ink are further explored.

4.
Adv Sci (Weinh) ; 10(3): e2205234, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36424184

RESUMO

Multipores engineering composed of micro/mesopores is an effective strategy to improve potassium storage performance via providing enormous adsorption sites and shortened ions diffusion distance. However, a detailed exploration of the role played by macropores in potassium storage is still lacking and has been barely reported until now. Herein, a superstructure carbon hexahedron (DGN-900) is synthesized using poly tannic acid (PTA) as precursor. Due to the spatially confined two-step local contraction of PTA along different directions and dimensions during pyrolysis, defective nanosheets with macropores are formed, while realizing a balance between defects content and graphitization degree by regulating temperature. The presence of macropores is conducive to accelerating electrolyte ions rapid infiltration within electrode, and its pore volume can accommodate electrode structure fluctuation upon cycling, while the most suitable ratio of defects to graphitic provides rich ions adsorption sites and sufficient electrons transfer channels, simultaneously. These advantages enable a prominent electrochemical performance in DGN-900 electrode, including high rate (202.9 mAh g-1 at 2 A g-1 ) and long cycling stability over 2000 cycles. This unique fabrication strategy, that is, defects engineering coupled with macropores structure, makes fast and durable potassium storage possible.

5.
Org Lett ; 23(19): 7423-7427, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523339

RESUMO

In the aqueous solution, l-CySS-OMe induced pS-WP5 from racemic WP5. Upon the addition of dithiothreitol as a reducing reagent to the above system, pS-WP5 was then converted to pR-WP5 for the reason that l-CySS-OMe was reduced to l-Cys-OMe. Followed by the addition of H2O2 as an oxidation reagent, pR-WP5 was converted back to pS-WP5. The chiral conformational transferring process between pR-WP5 and pS-WP5 can be easily and visually observed by reading the CD signal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...