Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(27): 19134-19146, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38882475

RESUMO

Post-extraction wound infections are a common complication of dental extractions. More specifically, infection in the alveolar socket after tooth extraction accelerates the resorption and destruction of the alveolar bone, and ultimately affects the final restoration results. Currently, the main clinical treatment approaches applied to the socket after tooth extraction include mechanical wound debridement, chemical rinses (e.g., chlorhexidine), filling of the extraction socket with absorbent gelatin sponges, and the systemic application of antibiotics. However, these traditional treatment modalities have some limitations and their therapeutic effects are unsatisfactory. In this study, a phototherapeutic temperature-sensitive hydrogel material was constructed for injection using a tea polyphenol (TP)-modified poly-N-isopropylacrylamide (PNIPAM) hydrogel skeleton loaded with the photosensitiser indocyanine green (ICG). The resulting PNIPAM-TP/ICG system exhibited an excellent injectability and temperature-sensitive properties. In addition, it stopped haemorrhaging and acted as a wound astringent. The hydrogel steadily released ICG into the oral environment to exert photothermal/photodynamic effects along with synergistic antibacterial and anti-inflammatory properties when combined with tea polyphenols. In vivo experiments demonstrated that the application of PNIPAM-TP/ICG to infected dental extraction wounds in rats rapidly stopped the bleeding and accelerated wound healing. Overall, this study describes a drug-loaded, temperature-sensitive hydrogel for the treatment of open wound infections, and shows promise as a reference for the treatment of tooth extraction wounds.

2.
J Mater Chem B ; 11(47): 11265-11279, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37974456

RESUMO

As one of the most common malignancies, oral squamous cell carcinoma (OSCC) with high rates of invasiveness and metastasis threatens people's health worldwide, while traditional therapeutic approaches have not met the requirement of its cure. Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have shown great potential for OSCC treatment due to their noninvasiveness or minimal invasiveness, high selectivity and little tolerance. However, PTT or PDT alone makes it difficult to eradicate OSCC and prevent its metastasis and recurrence. Here, double-layered membrane vesicles (DMVs) were extracted from attenuated Porphyromonas gingivalis, one of the most common pathogens inside the oral region, and served as an immune adjuvant to develop a biomimetic phototherapeutic nanoagent named PBAE/IR780@DMV for OSCC treatment via combining dual PTT/PDT and robust antitumor immunity. To obtain PBAE/IR780@DMV, poly(ß-amino) ester (PBAE) was used as a carrier material to prepare the nanoparticles for loading IR780, a widely known photosensitizer possessing both PTT and PDT capabilities, followed by surface wrapping with DMVs. Upon 808 nm laser irradiation, PBAE/IR780@DMV exerted strong antitumor effects against OSCC both in vitro and in vivo, via combining PTT/PDT and specific immune responses triggered by tumor-associated antigens and DMVs. Altogether, this study provides a promising biomimetic phototherapeutic nanoagent for comprehensive treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Fotoquimioterapia , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Biomimética , Neoplasias Bucais/tratamento farmacológico
3.
Small ; 19(52): e2304014, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653616

RESUMO

Bacterial therapy is an emerging hotspot in tumor immunotherapy, which can initiate antitumor immune activation through multiple mechanisms. Porphyromonas gingivalis (Pg), a pathogenic bacterium inhabiting the oral cavity, contains a great deal of pathogen associated molecular patterns that can activate various innate immune cells to promote antitumor immunity. Owing to the presence of protoporphyrin IX (PpIX), Pg is also an excellent photosensitizer for photodynamic therapy (PDT) via the in situ generation of reactive oxygen species. This study reports a bacterial nanomedicine (nmPg) fabricated from Pg through lysozyme degradation, ammonium chloride lysis, and nanoextrusion, which has potent PDT and immune activation performances for oral squamous cell carcinoma (OSCC) treatment. To further promote the tumoricidal efficacy, a commonly used chemotherapeutic drug doxorubicin (DOX) is efficiently encapsulated into nmPg through a simple incubation method. nmPg/DOX thus prepared exhibits significant synergistic effects on inhibiting the growth and metastasis of OSCC both in vitro and in vivo via photodynamic-immunotherapy and chemotherapy. In summary, this work develops a promising bacterial nanomedicine for enhanced treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Fotoquimioterapia , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Fotoquimioterapia/métodos , Nanomedicina , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral
4.
ACS Biomater Sci Eng ; 9(1): 485-497, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36507692

RESUMO

Photothermal therapy (PTT) and photodynamic therapy (PDT) are emerging alternative antibacterial approaches. However, due to the lack of selectivity of photosensitizers for pathogenic bacteria, these methods often show more or less different degrees of in vivo toxicity. Moreover, it is difficult for PDT to exert effective antibacterial effects against anaerobic infections due to the oxygen deficiency. As one of the major anaerobic pathogens in oral infections, Porphyromonas gingivalis (P. gingivalis) acquires iron and porphyrin mainly from hemoglobin in the host. Hence, we developed a nanophotosensitizer named as oxyHb@IR820 through stable complexation between oxyhemoglobin and IR820, which is a photosensitizer possessing both PTT and PDT performance, for fighting P. gingivalis oral infection specifically and efficiently. Owing to hydrophobic interaction, oxyHb@IR820 had much stronger photoabsorption at 808 nm than free IR820, and thus exhibited significantly enhanced photothermal conversion efficiency. As an oxygen donor, oxyHb played an important role in enhancing the photodynamic efficiency of oxyHb@IR820. More importantly, oxyHb@IR820 showed efficient and specific uptake in P. gingivalis and exerted synergistic PTT/PDT performance against P. gingivalis and oral infection in golden hamsters. In summary, this study provides an efficient strategy for delivering photosensitizers specifically to P. gingivalis and augmenting antibacterial PDT against anaerobic infections.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Porphyromonas gingivalis , Oxiemoglobinas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
5.
Int J Nanomedicine ; 17: 4293-4306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36134201

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common type of malignant tumor in the head and neck, with a poor prognosis mainly due to recurrence and metastasis. Classical treatment modalities for OSCC like surgery and radiotherapy have difficulties in dealing with metastatic tumors, and together with chemotherapy, they have major problems related to non-specific cell death. Molecular targeted therapies offer solutions to these problems through not only potentially maximizing the anticancer efficacy but also minimizing the treatment-related toxicity. Among them, the receptor-mediated targeted delivery of anticancer therapeutics remains the most promising one. As OSCC exhibits a heterogeneous nature, selecting the appropriate receptors for targeting is the prerequisite. Hence, we reviewed the OSCC-associated receptors previously used in targeted therapy, focused on their biochemical characteristics and expression patterns, and discussed the application potential in personalized targeted therapy of OSCC. We hope that a better comprehension of this subject will help to provide the fundamental information for OSCC personalized therapeutic planning.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Terapia de Alvo Molecular , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
6.
J Nanobiotechnology ; 19(1): 413, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895255

RESUMO

BACKGROUND: Periodontitis is a chronic inflammatory disease in oral cavity owing to bacterial infection. Photothermal therapy (PTT) and photodynamic therapy (PDT) have many advantages for antibacterial treatment. As an excellent photosensitizer, indocyanine green (ICG) shows prominent photothermal and photodynamic performances. However, it is difficult to pass through the negatively charged bacterial cell membrane, thus limiting its antibacterial application for periodontitis treatment. RESULTS: In this work, self-assembled nanoparticles containing ICG and polycationic brush were prepared for synergistic PTT and PDT against periodontitis. First, a star-shaped polycationic brush poly(2-(dimethylamino)ethyl methacrylate) (sPDMA) was synthesized via atom transfer radical polymerization (ATRP) of DMA monomer from bromo-substituted ß-cyclodextrin initiator (CD-Br). Next, ICG was assembled with sPDMA to prepare ICG-loaded sPDMA (sPDMA@ICG) nanoparticles (NPs) and the physicochemical properties of these NPs were characterized systematically. In vitro antibacterial effects of sPDMA@ICG NPs were investigated in porphyromonas gingivalis (Pg), one of the recognized periodontitis pathogens. A ligature-induced periodontitis model was established in Sprague-Dawley rats for in vivo evaluation of anti-periodontitis effects of sPDMA@ICG NPs. Benefiting from the unique brush-shaped architecture of sPDMA polycation, sPDMA@ICG NPs significantly promoted the adsorption and penetration of ICG into the bacterial cells and showed excellent PTT and PDT performances. Both in vitro and in vivo, sPDMA@ICG NPs exerted antibacterial and anti-periodontitis actions via synergistic PTT and PDT. CONCLUSIONS: A self-assembled nanosystem containing ICG and polycationic brush has shown promising clinical application for synergistic PTT and PDT against periodontitis.


Assuntos
Nanopartículas/química , Periodontite/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Polieletrólitos , Animais , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Feminino , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Periodontite/microbiologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Polieletrólitos/química , Polieletrólitos/farmacologia , Ratos , Ratos Sprague-Dawley
7.
ACS Biomater Sci Eng ; 7(2): 772-786, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33411504

RESUMO

Photodynamic therapy (PDT), an emerging approach that involves photosensitizers, light, and molecular oxygen, has shown promise for fighting periodontitis. However, PDT does not always acquire the desired therapeutic outcomes since some photosensitizers have strong hydrophobic properties and are difficult to absorb efficiently by periodontal pathogenic bacteria. Here, a hydrophobic photosensitizer chlorin e6 (Ce6) was hydrophilically modified via conjugation with TAT peptide, a cationic cell-penetrating peptide, to improve its solubility and enhance its bacterial adsorption by promoting its interaction with the negatively charged cell walls and penetration through the cell membranes. The obtained TAT-Ce6 conjugate (TAT-Ce6) was used to prepare self-assembled nanoparticles (NPs) for loading tinidazole (TDZ), a clinically used antibiotic agent, thus hoping to achieve synergistic antiperiodontitis effects through combining PDT and antibiotic therapy. Compared to free Ce6, TAT-Ce6 nanoparticles (TAT-Ce6 NPs) had greatly enhanced adsorption and penetration abilities for periodontal pathogen bacteria and also exhibited significantly increased PDT efficiencies in both periodontal pathogen bacteria and monocyte macrophages. Upon 635 nm laser irradiation, TDZ-loaded TAT-Ce6 (TAT-Ce6/TDZ) NPs exerted remarkable synergistic antiperiodontitis effects of PDT and antibiotic therapy, reflecting in the effective killing of periodontal pathogenic bacteria in vitro and the reduced adsorption of alveolar bone in the Sprague-Dawley rat model of periodontitis. Altogether, this study develops a novel photosensitizer that can be efficiently absorbed by the periodontal pathogenic bacteria and also provides a potent combination strategy of PDT with antibiotic therapy for clinical periodontitis treatment.


Assuntos
Periodontite , Fármacos Fotossensibilizantes , Animais , Antibacterianos/farmacologia , Bactérias , Periodontite/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
8.
Int J Nanomedicine ; 15: 2095-2118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273705

RESUMO

PURPOSE: Zinc (Zn), an essential trace element in the body, has stable chemical properties, excellent osteogenic ability and moderate immunomodulatory property. In the present study, a Zn-incorporated TiO2 nanotube (TNT) was fabricated on titanium (Ti) implant material. We aimed to evaluate the influence of nano-scale topography and Zn on behaviors of murine RAW 264.7 macrophages. Moreover, the effects of Zn-incorporated TNT surface-regulated macrophages on the behaviors and osteogenic differentiation of murine MC3T3-E1 osteoblasts were also investigated. METHODS: TNT coatings were firstly fabricated on a pure Ti surface using anodic oxidation, and then nano-scale Zn particles were incorporated onto TNTs by the hydrothermal method. Surface topography, chemical composition, roughness, hydrophilicity, Zn release pattern and protein adsorption ability of the Zn-incorporated TiO2 nanotube surface were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), surface profiler, contact angle test, Zn release test and protein adsorption test. The cell behaviors and both pro-inflammatory (M1) and pro-regenerative (M2) marker gene and protein levels in macrophages cultured on Zn-incorporated TNTs surfaces with different TNT diameters were detected. The supernatants of macrophages were extracted and preserved as conditioned medium (CM). Furthermore, the behaviors and osteogenic properties of osteoblasts cultured in CM on various surfaces were evaluated. RESULTS: The release profile of Zn on Zn-incorporated TNT surfaces revealed a controlled release pattern. Macrophages cultured on Zn-incorporated TNT surfaces displayed enhanced gene and protein expression of M2 markers, and M1 markers were moderately inhibited, compared with the LPS group (the inflammation model). When cultured in CM, osteoblasts cultured on Zn-incorporated TNTs showed strengthened cell proliferation, adhesion, osteogenesis-related gene expression, alkaline phosphatase activity and extracellular mineralization, compared with their TNT counterparts and the Ti group. CONCLUSION: This study suggests that the application of Zn-incorporated TNT surfaces may establish an osteogenic microenvironment and accelerate bone formation. It provided a promising strategy of Ti surface modification for a better applicable prospect.


Assuntos
Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Nanotubos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Zinco/farmacocinética , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Microscopia Eletrônica de Varredura , Nanotubos/química , Osteoblastos/citologia , Osteogênese/genética , Espectroscopia Fotoeletrônica , Células RAW 264.7 , Propriedades de Superfície , Titânio/química , Difração de Raios X , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...