Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yi Chuan ; 46(6): 490-501, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38886152

RESUMO

The JNK signaling pathway plays crucial roles in various physiological processes, including cell proliferation, differentiation, migration, apoptosis, and stress response. Dysregulation of this pathway is closely linked to the onset and progression of numerous major diseases, such as developmental defects and tumors. Identifying and characterizing novel components of the JNK signaling pathway to enhance and refine its network hold significant scientific and clinical importance for the prevention and treatment of associated cancers. This study utilized the model organism Drosophila and employed multidisciplinary approaches encompassing genetics, developmental biology, biochemistry, and molecular biology to investigate the interplay between Tip60 and the JNK signaling pathway, and elucidated its regulatory mechanisms. Our findings suggest that loss of Tip60 acetyltransferase activity results in JNK signaling pathway activation and subsequent induction of JNK-dependent apoptosis. Genetic epistasis analysis reveals that Tip60 acts downstream of JNK, paralleling with the transcription factor FOXO. The biochemical results confirm that Tip60 can bind to FOXO and acetylate it. Introduction of human Tip60 into Drosophila effectively mitigates apoptosis induced by JNK signaling activation, underscoring conserved regulatory role of Tip60 in the JNK signaling pathway from Drosophila to humans. This study further enhances our understanding of the regulatory network of the JNK signaling pathway. By revealing the role and mechanism of Tip60 in JNK-dependent apoptosis, it unveils new insights and potential therapeutic avenues for preventing and treating associated cancers.


Assuntos
Apoptose , Proteínas de Drosophila , Fatores de Transcrição Forkhead , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Drosophila/genética , Drosophila/metabolismo , Sistema de Sinalização das MAP Quinases , Humanos , Transdução de Sinais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética
2.
J Leukoc Biol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713107

RESUMO

Immunoglobulin A nephropathy (IgAN) is a complex autoimmune disease with various underlying causes and significant clinical heterogeneity. There are large individual differences in its development, and the etiology and pathogenesis are still poorly understood. While it is known that immunobiological factors play a significant role in the pathophysiology of IgAN, the specific nature of these factors has yet to be fully elucidated. Numerous investigations have verified that cluster of differentiation 4+ (CD4+) and CD8+ T lymphocytes are involved in the immunopathogenesis of IgAN. Furthermore, certain data also point to γδT cells' involvement in the pathophysiology of IgAN. By thoroughly examining the mechanisms of action of these T cells in the context of IgAN, this review sheds light on the immunopathogenesis of the disease and its associated factors. The review is intended to provide reference value for the future research in this field and promising treatment clues for clinical patients.

3.
Aging (Albany NY) ; 16(1): 964-982, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175721

RESUMO

Immunoglobulin A nephropathy (IgAN), one type of glomerulonephritis, displays the accumulation of glycosylated IgA in the mesangium. Studies have demonstrated that both genetics and epigenetics play a pivotal role in the occurrence and progression of IgAN. Post-translational modification (PTM) has been revealed to critically participate in IgAN development and progression because PTM dysregulation results in impaired degradation of proteins that regulate IgAN pathogenesis. A growing number of studies identify that PTMs, including sialylation, o-glycosylation, galactosylation, phosphorylation, ubiquitination and deubiquitination, modulate the initiation and progression of IgAN. Hence, in this review, we discuss the functions and mechanisms of PTMs in regulation of IgAN. Moreover, we outline numerous compounds that govern PTMs and attenuate IgAN progression. Targeting PTMs might be a useful strategy to ameliorate IgAN.


Assuntos
Glomerulonefrite por IGA , Humanos , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/patologia , Glicosilação , Fosforilação , Processamento de Proteína Pós-Traducional
4.
Cell Biol Int ; 47(1): 156-166, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36229925

RESUMO

Tumor necrosis factor-α (TNF-α) and heterogenous nuclear ribonucleoprotein L (hnRNPL)-related immunoregulatory lincRNA (THRIL) is a long noncoding RNA (lncRNA) involved in various inflammatory diseases. However, its role in atherosclerosis is not known. In this study, we aimed to investigate the function of THRIL in mediating macrophage inflammation and foam cell formation. The expression of THRIL was quantified in THP-1 macrophages after treatment with oxidized low-density lipoprotein (oxLDL). The effect of THRIL overexpression and knockdown on oxLDL-induced inflammatory responses and lipid accumulation was determined. THRIL-associated protein partners were identified by RNA pull-down and RNA immunoprecipitation assays. We show that THRIL is upregulated in macrophages after oxLDL treatment. Knockdown of THRIL blocks oxLDL-induced expression of interleukin-1ß (IL-1ß), IL-6, and TNF-α and lipid accumulation. Conversely, ectopic expression of THRIL enhances inflammatory gene expression and lipid deposition in oxLDL-treated macrophages. Moreover, THRIL depletion increases cholesterol efflux from macrophages and the expression of ATP-binding cassette transporter (ABC) A1 and ABCG1. FOXO1 is identified as a protein partner of THRIL and promotes macrophage inflammation and lipid accumulation. Furthermore, overexpression of FOXO1 restores lipid accumulation and inflammatory cytokine production in THRIL-depleted macrophages. In conclusion, our data suggest a model where THRIL interacts with FOXO1 to promote macrophage inflammation and foam cell formation. THRIL may represent a therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Células Espumosas , Inflamação , Lipoproteínas LDL , RNA Longo não Codificante , Humanos , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Técnicas de Silenciamento de Genes
5.
Front Pharmacol ; 14: 1306125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249346

RESUMO

Background: Chronic kidney disease (CKD) is now globally recognized as a critical public health concern. Vascular calcification (VC) represents a significant risk factor for cardiovascular events in individuals with CKD. It is the accessible and precise diagnostic biomarkers for monitoring the progression of CKD and the concurrent VC are urgently needed. Methods: The adenine diet-induced CKD rat model was utilized to investigate chronic kidney injury, calcification in the kidney and thoracic aorta, and dysregulation of biochemical indices. Enzyme-linked immune sandwich assays were employed to analyze changes in calcification-related proteins. 16S rRNA sequencing was performed to delineate the microbiota characteristics in the gut and blood of CKD-afflicted rats. Additionally, transcriptome sequencing of kidney tissue was conducted to explore the relationship between CKD-associated microbiota features and alterations in kidney function. Results: The adenine diet-induced CKD inhibited body weight gain, and led to kidney injury, and pronounced calcification in kidney and thoracic aorta. The microbiota both in the gut and blood of these affected rats exhibited significantly lower alpha diversity and distinctive beta diversity than those in their healthy counterparts. CKD resulted in dysregulation of several biochemical indices (including elevated levels of creatinine, low-density lipoprotein-cholesterol, sodium, phosphorous, total cholesterol, and urea and decreased levels of albumin, calcium, lactate dehydrogenase, and total bilirubin). Moreover, it upregulated calcification-related factors (bone sialoprotein [BSP], Klotho, fibroblast growth factor [FGF]-23, and sclerostin [SOST]) and lipopolysaccharide (LPS). Notably, the increased Acinetobacter in the blood was positively associated with calcifications in the kidney and thoracic aorta, in addition to the positive correlation with gut microbiota. The enrichment of Acinetobacter was concurrent with increases in calcification factors (BSP, FGF-23, and SOST), LPS, and phosphorous. Furthermore, transcriptome sequencing revealed that the enrichment of Acinetobacter was positively correlated with the majority of upregulated genes and negatively correlated with downregulated genes involved in the mineral absorption pathway. Conclusion: Our findings, for the first time, underscore that dysbiosis of symbiotic microbiota, both in the gut and blood, is involved in the progression of CKD. Particularly, the enrichment of Acinetobacter in blood emerges as a potential risk factor for CKD and its accompanying VC.

6.
Curr Pharm Des ; 27(19): 2264-2273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33121400

RESUMO

MicroRNAs (miRNAs) play a vital role in the onset and development of many diseases, including cancers. Emerging evidence shows that numerous miRNAs have the potential to be used as diagnostic biomarkers for cancers, and miRNA-based therapy may be a promising therapy for the treatment of malignant neoplasm. MicroRNA-145 (miR-145) has been considered to play certain roles in various cellular processes, such as proliferation, differentiation and apoptosis, via modulating the expression of direct target genes. Recent reports show that miR-145 participates in the progression of digestive system cancers, and plays crucial and novel roles in cancer treatment. In this review, we summarize the recent knowledge concerning the function of miR-145 and its direct targets in digestive system cancers. We discuss the potential role of miR-145 as a valuable biomarker for digestive system cancers and how miR-145 regulates these digestive system cancers via different targets to explore the potential strategy of targeting miR-145.


Assuntos
Neoplasias do Sistema Digestório , MicroRNAs , Apoptose , Biomarcadores Tumorais/genética , Neoplasias do Sistema Digestório/tratamento farmacológico , Neoplasias do Sistema Digestório/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...