Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 38(13): e101996, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268597

RESUMO

Anthrax lethal toxin (LT) is known to induce NLRP1B inflammasome activation and pyroptotic cell death in macrophages from certain mouse strains in its metalloprotease activity-dependent manner, but the underlying mechanism is unknown. Here, we establish a simple but robust cell system bearing dual-fluorescence reporters for LT-induced ASC specks formation and pyroptotic lysis. A genome-wide siRNA screen and a CRISPR-Cas9 knockout screen were applied to this system for identifying genes involved in LT-induced inflammasome activation. UBR2, an E3 ubiquitin ligase of the N-end rule degradation pathway, was found to be required for LT-induced NLRP1B inflammasome activation. LT is known to cleave NLRP1B after Lys44. The cleaved NLRP1B, bearing an N-terminal leucine, was targeted by UBR2-mediated ubiquitination and degradation. UBR2 partnered with an E2 ubiquitin-conjugating enzyme UBE2O in this process. NLRP1B underwent constitutive autocleavage before the C-terminal CARD domain. UBR2-mediated degradation of LT-cleaved NLRP1B thus triggered release of the noncovalent-bound CARD domain for subsequent caspase-1 activation. Our study illustrates a unique mode of inflammasome activation in cytosolic defense against bacterial insults.


Assuntos
Antígenos de Bactérias/efeitos adversos , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Toxinas Bacterianas/efeitos adversos , Macrófagos/efeitos dos fármacos , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sistemas CRISPR-Cas , Caspase 1/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Inflamassomos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Domínios Proteicos , Proteólise/efeitos dos fármacos , Células RAW 264.7 , RNA Interferente Pequeno/farmacologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
2.
Chem Sci ; 9(16): 3957-3963, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29780528

RESUMO

Gram-negative bacterial lipopolysaccharide (LPS)-induced Toll-like receptor 4 (TLR4) mediated pro-inflammatory signaling plays a key role in immunoprotection against infectious challenges and boosts adaptive immunity, whereas the activation of the cytosolic LPS receptor caspase-4/11 leads to cell death by pyroptosis and is deeply implicated in the development of sepsis. Despite tremendous advances in the understanding of the LPS-TLR4 interaction, predictably regulated TLR4 activation has not yet been achieved. The structural basis for the induction of caspase-4/11 protease activity by LPS is currently unknown. The modulation of innate and adaptive immune responses through the controlled induction of TLR4 signaling without triggering caspase-4/11 activity would open novel perspectives in the development of safe vaccine adjuvants and immunotherapeutics. We report the discovery of highly potent glycan-based immunostimulants with picomolar affinity for TLR4 which interact with caspase-4/11 and promote caspase-4/11 oligomerization while abolishing caspase-11 protease activity. The rigidity and twisted molecular shape of the α,α-(1↔1')-linked disaccharide core of synthetic LPS mimicking anionic glycolipids accounted for both species-independent and adjustable TLR4-mediated NF-κB signaling and the modulation of caspase-4/11 activation. By the use of crystal structure based design and advanced synthetic chemistry we created a set of versatile probes for studying the structural basis of caspase-4/11 activation and established a chemical strategy for controllable TLR4 mediated cytokine release which is dissociable from the induction of caspase-11 protease activity.

3.
Methods Mol Biol ; 1714: 131-148, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177860

RESUMO

Gasdermin-D (also known as GSDMD), the newly identified executioner of pyroptotic cell death, is cleaved by activated caspase-1 downstream of canonical inflammasome activation or caspase-4, 5, and 11 upon their ligation and activation by cytosolic LPS. Upon a single cleavage between the two domains in Gasdermin-D, the N-terminal domain binds to membrane lipids and lyses cells by forming pores of an inner diameter of 10-14 nm within the membrane. The inter-domain cleavage of Gasdermin-D is a reliable marker for the activation of inflammatory caspases and cell pyroptosis. Here, we describe the methods for examining Gasdermin-D cleavage by activated inflammatory caspases in vitro and upon inflammasome activation in vivo.


Assuntos
Caspases/metabolismo , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Piroptose , Caspases/imunologia , Humanos , Técnicas In Vitro , Inflamassomos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Ligação a Fosfato , Proteínas Recombinantes/metabolismo
4.
Trends Biochem Sci ; 42(4): 245-254, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27932073

RESUMO

Pyroptosis was long regarded as caspase-1-mediated monocyte death in response to certain bacterial insults. Caspase-1 is activated upon various infectious and immunological challenges through different inflammasomes. The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific. Recent studies identified the pyroptosis executioner, gasdermin D (GSDMD), a substrate of both caspase-1 and caspase-11/4/5. GSDMD represents a large gasdermin family bearing a novel membrane pore-forming activity. Thus, pyroptosis is redefined as gasdermin-mediated programmed necrosis. Gasdermins are associated with various genetic diseases, but their cellular function and mechanism of activation (except for GSDMD) are unknown. The gasdermin family suggests a new area of research on pyroptosis function in immunity, disease, and beyond.


Assuntos
Necrose/metabolismo , Proteínas de Neoplasias/metabolismo , Piroptose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Ligação a Fosfato
6.
Nature ; 535(7610): 111-6, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27281216

RESUMO

Inflammatory caspases cleave the gasdermin D (GSDMD) protein to trigger pyroptosis, a lytic form of cell death that is crucial for immune defences and diseases. GSDMD contains a functionally important gasdermin-N domain that is shared in the gasdermin family. The functional mechanism of action of gasdermin proteins is unknown. Here we show that the gasdermin-N domains of the gasdermin proteins GSDMD, GSDMA3 and GSDMA can bind membrane lipids, phosphoinositides and cardiolipin, and exhibit membrane-disrupting cytotoxicity in mammalian cells and artificially transformed bacteria. Gasdermin-N moved to the plasma membrane during pyroptosis. Purified gasdermin-N efficiently lysed phosphoinositide/cardiolipin-containing liposomes and formed pores on membranes made of artificial or natural phospholipid mixtures. Most gasdermin pores had an inner diameter of 10­14 nm and contained 16 symmetric protomers. The crystal structure of GSDMA3 showed an autoinhibited two-domain architecture that is conserved in the gasdermin family. Structure-guided mutagenesis demonstrated that the liposome-leakage and pore-forming activities of the gasdermin-N domain are required for pyroptosis. These findings reveal the mechanism for pyroptosis and provide insights into the roles of the gasdermin family in necrosis, immunity and diseases.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Proteínas/química , Piroptose , Animais , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Cardiolipinas/metabolismo , Caspases/metabolismo , Linhagem Celular , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipossomos , Lipídeos de Membrana/metabolismo , Camundongos , Modelos Moleculares , Necrose , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Fosfato , Fosfatidilinositóis/metabolismo , Porosidade/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas/metabolismo , Proteínas/farmacologia , Piroptose/efeitos dos fármacos , Piroptose/imunologia
7.
J Exp Med ; 213(5): 647-56, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27114610

RESUMO

Biochemical studies suggest that the NAIP family of NLR proteins are cytosolic innate receptors that directly recognize bacterial ligands and trigger NLRC4 inflammasome activation. In this study, we generated Naip5(-/-), Naip1(-/-), and Naip2(-/-) mice and showed that bone marrow macrophages derived from these knockout mice are specifically deficient in detecting bacterial flagellin, the type III secretion system needle, and the rod protein, respectively. Naip1(-/-), Naip2(-/-), and Naip5(-/-) mice also resist lethal inflammasome activation by the corresponding ligand. Furthermore, infections performed in the Naip-deficient macrophages have helped to define the major signal in Legionella pneumophila, Salmonella Typhimurium and Shigella flexneri that is detected by the NAIP/NLRC4 inflammasome. Using an engineered S. Typhimurium infection model, we demonstrate the critical role of NAIPs in clearing bacterial infection and protecting mice from bacterial virulence-induced lethality. These results provide definitive genetic evidence for the important physiological function of NAIPs in antibacterial defense and inflammatory damage-induced lethality in mice.


Assuntos
Células da Medula Óssea/imunologia , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas/imunologia , Inflamassomos/imunologia , Macrófagos/imunologia , Proteína Inibidora de Apoptose Neuronal/imunologia , Fatores de Virulência/imunologia , Animais , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/patogenicidade , Inflamassomos/genética , Camundongos , Camundongos Knockout , Proteína Inibidora de Apoptose Neuronal/genética , Fatores de Virulência/genética
8.
Science ; 352(6290): 1232-6, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27103670

RESUMO

Dendritic cells (DCs) use pattern recognition receptors to detect microorganisms and activate protective immunity. These cells and receptors are thought to operate in an all-or-nothing manner, existing in an immunologically active or inactive state. Here, we report that encounters with microbial products and self-encoded oxidized phospholipids (oxPAPC) induce an enhanced DC activation state, which we call "hyperactive." Hyperactive DCs induce potent adaptive immune responses and are elicited by caspase-11, an enzyme that binds oxPAPC and bacterial lipopolysaccharide (LPS). oxPAPC and LPS bind caspase-11 via distinct domains and elicit different inflammasome-dependent activities. Both lipids induce caspase-11-dependent interleukin-1 release, but only LPS induces pyroptosis. The cells and receptors of the innate immune system can therefore achieve different activation states, which may permit context-dependent responses to infection.


Assuntos
Imunidade Adaptativa , Caspases/imunologia , Células Dendríticas/imunologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/imunologia , Fosfolipídeos/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspases/genética , Caspases Iniciadoras , Morte Celular/imunologia , Células Dendríticas/metabolismo , Imunidade Inata , Inflamassomos/imunologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Reconhecimento de Padrão/genética , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo
9.
Nature ; 526(7575): 660-5, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26375003

RESUMO

Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1ß release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Inflamação/enzimologia , Proteínas de Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/deficiência , Sistemas CRISPR-Cas , Caspase 1/metabolismo , Linhagem Celular , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Proteínas de Neoplasias/química , Proteínas de Ligação a Fosfato , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Especificidade por Substrato
10.
Nature ; 514(7521): 187-92, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25119034

RESUMO

The murine caspase-11 non-canonical inflammasome responds to various bacterial infections. Caspase-11 activation-induced pyroptosis, in response to cytoplasmic lipopolysaccharide (LPS), is critical for endotoxic shock in mice. The mechanism underlying cytosolic LPS sensing and the responsible pattern recognition receptor are unknown. Here we show that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS. LPS-induced cytotoxicity was mediated by human caspase-4 that could functionally complement murine caspase-11. Human caspase-4 and the mouse homologue caspase-11 (hereafter referred to as caspase-4/11) and also human caspase-5, directly bound to LPS and lipid A with high specificity and affinity. LPS associated with endogenous caspase-11 in pyroptotic cells. Insect-cell purified caspase-4/11 underwent oligomerization upon LPS binding, resulting in activation of the caspases. Underacylated lipid IVa and lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) could bind to caspase-4/11 but failed to induce their oligomerization and activation. LPS binding was mediated by the CARD domain of the caspase. Binding-deficient CARD-domain point mutants did not respond to LPS with oligomerization or activation and failed to induce pyroptosis upon LPS electroporation or bacterial infections. The function of caspase-4/5/11 represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation.


Assuntos
Caspases Iniciadoras/metabolismo , Caspases/metabolismo , Imunidade Inata , Lipopolissacarídeos/metabolismo , Animais , Caspases/química , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras/química , Caspases Iniciadoras/genética , Caspases Iniciadoras/imunologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Teste de Complementação Genética , Humanos , Inflamação/enzimologia , Queratinócitos/citologia , Queratinócitos/metabolismo , Lipídeo A/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Necrose/induzido quimicamente , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/genética , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/imunologia , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
11.
Proc Natl Acad Sci U S A ; 110(35): 14408-13, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940371

RESUMO

Inflammasome mediated by central nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein is critical for defense against bacterial infection. Here we show that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp., can induce robust inflammasome activation in both human monocyte-derived and mouse bone marrow macrophages. Needle protein activation of human NRL family CARD domain containing 4 (NLRC4) inflammasome requires the sole human neuronal apoptosis inhibitory protein (hNAIP). Among the seven mouse NAIPs, NAIP1 functions as the mouse counterpart of hNAIP. We found that NAIP1 recognition of T3SS needle proteins was more robust in mouse dendritic cells than in bone marrow macrophages. Needle proteins, as well as flagellin and rod proteins from five different bacteria, exhibited differential and cell type-dependent inflammasome-stimulating activity. Comprehensive profiling of the three types of NAIP ligands revealed that NAIP1 sensing of the needle protein dominated S. flexneri-induced inflammasome activation, particularly in dendritic cells. hNAIP/NAIP1 and NAIP2/5 formed a large oligomeric complex with NLRC4 in the presence of corresponding bacterial ligands, and could support reconstitution of the NLRC4 inflammasome in a ligand-specific manner.


Assuntos
Proteínas de Bactérias/metabolismo , Inflamassomos/metabolismo , Proteína Inibidora de Apoptose Neuronal/metabolismo , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Flagelina/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Ligação Proteica
12.
Nature ; 477(7366): 596-600, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21918512

RESUMO

Inflammasomes are large cytoplasmic complexes that sense microbial infections/danger molecules and induce caspase-1 activation-dependent cytokine production and macrophage inflammatory death. The inflammasome assembled by the NOD-like receptor (NLR) protein NLRC4 responds to bacterial flagellin and a conserved type III secretion system (TTSS) rod component. How the NLRC4 inflammasome detects the two bacterial products and the molecular mechanism of NLRC4 inflammasome activation are not understood. Here we show that NAIP5, a BIR-domain NLR protein required for Legionella pneumophila replication in mouse macrophages, is a universal component of the flagellin-NLRC4 pathway. NAIP5 directly and specifically interacted with flagellin, which determined the inflammasome-stimulation activities of different bacterial flagellins. NAIP5 engagement by flagellin promoted a physical NAIP5-NLRC4 association, rendering full reconstitution of a flagellin-responsive NLRC4 inflammasome in non-macrophage cells. The related NAIP2 functioned analogously to NAIP5, serving as a specific inflammasome receptor for TTSS rod proteins such as Salmonella PrgJ and Burkholderia BsaK. Genetic analysis of Chromobacterium violaceum infection revealed that the TTSS needle protein CprI can stimulate NLRC4 inflammasome activation in human macrophages. Similarly, CprI is specifically recognized by human NAIP, the sole NAIP family member in human. The finding that NAIP proteins are inflammasome receptors for bacterial flagellin and TTSS apparatus components further predicts that the remaining NAIP family members may recognize other unidentified microbial products to activate NLRC4 inflammasome-mediated innate immunity.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Sistemas de Secreção Bacterianos/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Flagelina/imunologia , Inflamassomos/imunologia , Animais , Caspase 1/metabolismo , Linhagem Celular , Chromobacterium/genética , Chromobacterium/imunologia , Chromobacterium/fisiologia , Humanos , Imunidade Inata/imunologia , Inflamassomos/metabolismo , Legionella pneumophila/imunologia , Legionella pneumophila/fisiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Inibidora de Apoptose Neuronal/imunologia , Proteína Inibidora de Apoptose Neuronal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...