Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 9153697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936980

RESUMO

Knowledge tracing (KT) is the task of modelling students' knowledge state based on their historical interactions on intelligent tutoring systems. Existing KT models ignore the relevance among the multiple knowledge concepts of a question and characteristics of online tutoring systems. This paper proposes a neural Turing machine-based skill-aware knowledge tracing (NSKT) for conjunctive skills, which can capture the relevance among the knowledge concepts of a question to model students' knowledge state more accurately and to discover more latent relevance among knowledge concepts effectively. We analyze the characteristics of the three real-world KT datasets in depth. Experiments on real-world datasets show that NSKT outperforms the state-of-the-art deep KT models on the AUC of prediction. This paper explores details of the prediction process of NSKT in modelling students' knowledge state, as well as the relevance of knowledge concepts and conditional influences between exercises.


Assuntos
Conhecimento , Estudantes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...