Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 942: 173427, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797400

RESUMO

The recurring appearance of Ulva prolifera green tides has become a pressing environmental issue, especially for marine transportation, tourism, and aquaculture in the stage of decomposition. An abundance of decaying U. prolifera leads to water acidification, hypoxia and pathogenic microorganism proliferation, threatening marine germplasm resources, particularly benthic organisms with weak escape ability. Epigenetic modification is considered to be one of the molecular mechanisms involved in the plastic adaptive response to environmental changes. However, few studies concerning the specific impact of decaying green tide on benthic animals at the epigenetic level. In this study, decomposing algal effluents of U. prolifera, sediments containing uncorrupted U. prolifera, pathogenic microorganism were considered as impact factors, to reveal the effect of decaying U. prolifera on marine economic benthic species, Paralichthys olivaceus, using both field and laboratory simulation experiments. Field simulation experiment showed higher mortality rates and serious histopathological damage than the laboratory simulation experiment. And both the decaying U. prolifera and the sediment containing U. prolifera were harmful to P. olivaceus. Genome-wide DNA methylation and transcription correlation analyses showed that the response of P. olivaceus to green tide stress and bacterial infection was mainly mediated by immune signaling pathways such as PI3K-Akt signaling pathway. DNA methylation regulates the expression of immune-related genes involved in the PI3K-Akt signaling pathway, which enables P. olivaceus to adapt to the adverse environmental stresses by resisting apoptosis. In summary, this research analyzed the potential role of P. olivaceus in decaying U. prolifera, which is of great significance for understanding the impact of decaying green tide on marine commercial fish and also provides some theoretical guidance for the proliferation and release of fish seedlings.

2.
Fish Shellfish Immunol ; 144: 109275, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081443

RESUMO

MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.


Assuntos
Doenças dos Peixes , Linguados , MicroRNAs , Vibrioses , Vibrio , Animais , Processamento Alternativo , Vibrio/fisiologia , Transcriptoma , Fígado/metabolismo , Peixes/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica/veterinária
3.
Fish Shellfish Immunol ; 141: 109043, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673387

RESUMO

Frequently occurred bacterial diseases have seriously affected the aquaculture industry of half-smooth tongue sole (Cynoglossus semilaevis). Notably, vibriosis, with Vibrio anguillarum as one of the causative pathogens, is the most severe bacterial disease with severe inflammatory response of the host, leading to high mortality rates. In the present study, we explored the relationship between bacterial concentrations and host mortality, inflammatory reaction, and immune response in half-smooth tongue sole after infection with V. anguillarum at different concentrations (Treatment 1, 6.4 × 105 CFU/mL; Treatment 2, 6.4 × 106 CFU/mL). The mortality of Treatment 2 (77.5%) was significantly higher than that of Treatment 1 (10%), corresponding with bacterial concentrations. Although the number of deaths varies, intensive deaths were observed within 24 h post infection (hpi) in both bacterial concentration groups. Histopathological analyses revealed that fish tissues were most severely damaged at 24 or 48 hpi, and Treatment 2 was more severe than Treatment 1. A qRT-PCR-based detection method with virulence factor gene empA was established to quantify the bacterial loads in various tissues, and the bacterial loads were the highest at 24 hpi in Treatment 2, and at 48 hpi in Treatment 1. Additionally, the expression levels of complement genes (C5a, C3, C5, and C6), inflammatory factors (IL-1ß, TNF-α, and IL-10), and other immune-related genes (jak2, NF-κB1, stat3, and tlr3) were increased in various tissues after infection in both treatment groups, with most genes being most expressed at 24 or 48 hpi, and expression levels of inflammatory factors in Treatment 2 were higher than those in Treatment 1. Moreover, the expression of C5a was positively correlated with that of proinflammatory cytokines in both bacterial concentration groups. According to the results of this study, 24-48 hpi was a key node for early vibriosis detection and intervention. Compared with the low mortality of Treatment 1, the mass death of fish in Treatment 2 was suggested to be caused by uncontrolled excessive inflammatory reaction induced by the overactivation of complement system, especially C5a. We believe these results could provide theoretical basis for prevention, evaluation, and treatment of vibrio disease in tongue sole aquaculture, and lay a solid foundation for future functional analyses.

4.
Int J Biol Macromol ; 252: 126445, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611685

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs involved in various biological processes, including immunity. Previously, we investigated the miRNAs of half-smooth tongue sole (Cynoglossus semilaevis) and found that miR-722 (designated Cse-miR-722) was significantly differentially expressed after infection with Vibrio anguillarum, reflecting its importance in immune response. Our preliminary bioinformatic analysis suggested that Cse-miR-722 could target C5aR1 (designated CsC5aR1), which was known to play crucial roles in complement activation and inflammatory response, as a receptor of C5a. However, the underlying mechanisms of their interactions and specific functions in inflammatory and immune response are still enigmas. In this study, we successfully cloned the precursor sequence of Cse-miR-722 (94 bp) and the full length of CsC5aR1 (1541 bp, protein molecular weight 39 kDa). The target gene of Cse-miR-722 was verified as CsC5aR1 by a dual luciferase reporter assay, and Cse-miR-722 was confirmed to regulate CsC5aR1 at the protein level using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The expression of CsC5aR1 and Cse-miR-722 in liver cells and four immune tissues of half-smooth tongue sole changed significantly after LPS stimulation and infection with V. anguillarum. To explore the functional role of Cse-miR-722 in half-smooth tongue sole, we performed both in vitro and in vivo experiments. Cse-miR-722 was observed to affect phagocytosis and respiratory burst activity of macrophages by regulating CsC5aR1 in half-smooth tongue sole. Furthermore, we found that Cse-miR-722 regulated the expression of CsC5aR1, CsC5a, and the inflammatory factors CsIL1-ß, CsIL6, CsIL8, and CsTNF-α both in vitro and in vivo. In addition, Cse-miR-722 reduced mortality and pathological damage. This study clarified the regulatory mechanism of Cse-miR-722 on CsC5aR1 and provided insight into the regulatory roles of Cse-miR-722 in immune responses, laying a theoretical foundation for the feasibility of using miR-722 to prevent and control bacterial diseases in teleost.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Linguados , MicroRNAs , Vibrioses , Vibrio , Animais , Linguados/genética , Inflamação , MicroRNAs/genética , Proteínas de Peixes/metabolismo
5.
Mar Pollut Bull ; 194(Pt A): 115410, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37595335

RESUMO

For 17 consecutive years, the outbreak of Ulva prolifera in the South Yellow Sea area of China has caused significant negative impacts on coastal ecological environment. However, its specific influence on fish immunity is rare. In this study, the juvenile Paralichthys olivaceus was exposed to fresh U. prolifera algae (FU) and decomposing algal effluent (DU). After short-term stress for 14 days, the histopathological and transcriptome analysis were performed to study the effect of U. prolifera decay on P. olivaceus. Histopathological analysis found that the liver, spleen and head kidneys of P. olivaceus were damaged after the short-term stress. The transcriptome results showed that the steroid biosynthesis signaling pathway and the PI3K-Akt signaling pathway were significantly enriched. Some immune related genes, including c1qc-like, dusp1, dusp16, HSP90 and metabolic related genes serotransferrin, were differentially expressed. These results highlighted the harmfulness of U. prolifera on marine fish, setting a solid foundation for further analyses.


Assuntos
Linguado , Ulva , Animais , Transcriptoma , Fosfatidilinositol 3-Quinases , Perfilação da Expressão Gênica , China
6.
Fish Shellfish Immunol ; 139: 108873, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271327

RESUMO

The complement system is essential to host defense, but its excessive activation caused by severe pathogen invasion is a driving force in adverse inflammatory. The binding of complement component 5a (C5a) and complement component 5a receptor 1 (C5aR1) is the key to trigger complement-mediated inflammatory response in mammals. However, the role of C5a-C5aR1 axis in fish immune response remains obscure. In this study, the role of C5a-C5aR1 axis of zebrafish (Danio rerio) after serious infection with Aeromonas hydrophila was investigated. C5a and C5aR1 of zebrafish were cloned, with CDS sequences of 228 and 1041 bp, respectively, and they were widely expressed in various tissues with the highest expression in the liver and spleen, respectively. The survival of zebrafish was closely correlated to the dose of A. hydrophila. The cytokine storm occurred at high concentrations of A. hydrophila infection. At 24 h post infection (hpi), the expression of C5a and C5aR1 in the spleen increased 26.8-fold and 9.9-fold in treatment group 1 (TG1, 3.0 × 107 CFU/mL) (P < 0.01), and 4.7-fold and 3.4-fold in treatment group 2 (TG2, 1.0 × 107 CFU/mL) (P < 0.05), respectively. Correspondingly, proinflammatory cytokines interleukin-1ß (IL-1ß), interleukin-8 (IL-8), and interleukin-17 (IL-17) were positively correlated to C5a and C5aR1 at mRNA and protein expression levels. The expression of IL-1ß was significantly increased in the spleen at 6 hpi, with a 599.2-fold and 203.2-fold upregulation in TG1 and TG2 (P < 0.001), respectively. Moreover, after inhibition of C5a-C5aR1 binding treated with C5aR1 antagonist (W-54011), zebrafish showed lower expression of C5a, C5aR1, and cytokines, less intestinal damage, and significantly enhancement of survival (P < 0.05) after A. hydrophila challenge. This study revealed that the inflammatory effect of C5a was achieved by binding to C5aR1 in zebrafish, providing novel insights into using C5a-C5aR1 axis as an effective target to reduce bacterial inflammation and disease in fish.


Assuntos
Aeromonas hydrophila , Peixe-Zebra , Animais , Complemento C5a/metabolismo , Inflamação/genética , Citocinas/genética , Mamíferos/metabolismo
7.
Environ Pollut ; 302: 119022, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219793

RESUMO

Green tide outbreaks caused by overgrowth of Ulva prolifera in the Yellow Sea of China can cause serious ecological stress with concomitant economic hardships, especially to marine fisheries. In this study, short-term effects (14 days) were evaluated using fresh algae U. prolifera (FU), and a 7-day assessment of the effects of decomposing U. prolifera (DU) algal effluent was conducted to determine the effects on the environmental and intestinal microbiota, intestinal transcriptome and mortality of the commercial marine benthic fish, Japanese flounder (Paralichthys olivaceus). The results revealed that algal degradation altered the microbial community structure of fish farm water and fish intestines and increased the relative abundance of the pathogens Flavobacteriaceae in water and Vibrio in fish intestines. Fish intestinal tissue structure appeared to be damaged, as indicated in pathological sections, and transcriptome analysis showed intestinal inflammation after exposure, which may have caused an increase in fish mortality. The degradation of U. prolifera led to a bloom of potential pathogenic bacteria and the inflammation of fish intestines, which resulted in disease in the flounder population that reduced fish harvests and might pose a potential health threat.


Assuntos
Linguado , Microbioma Gastrointestinal , Microbiota , Ulva , Animais , China , Eutrofização , Transcriptoma
8.
Artigo em Inglês | MEDLINE | ID: mdl-34146917

RESUMO

The liver is a multi-functional organ including metabolism, substance synthesis, detoxification, and various immune functions, and its role in immunity has attracted more and more attention. However, research on the liver immune response of fish infected by pathogenic bacteria is currently lacking. In this study, the transcriptomics and proteomics of the liver of Cynoglossus semilaevis infected with Vibrio anguillarum were analyzed. A total of 1470 genes and 497 proteins were differentially expressed in the pairwise comparison of obvious symptoms of infection (HOSG), no obvious symptoms of infection (NOSG) and PBS treatment (CG). Gene ontology and KEGG enrichment pathways analysis showed that differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were mainly enriched in toll-like receptors (TLRs), complement and coagulation cascades, nucleotide oligomerization domain (NOD)-like receptors (NLRs), mitogen-activated protein kinase (MAPK) and phagosome signaling pathways, which suggested the combined action of the five pathways were significant to enhance the liver immune defense. The combination of transcriptomic and proteomic analysis showed that ITGß1, C3, C5 and MRC1 were significantly up-regulated, which might play an important role in the liver immune response to the recognition of V. anguillarum, inflammatory response and phagocytosis. The transcriptome and proteome data we obtained provide information on some key genes and proteins for further study of the mechanism of liver immune response.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linguado/imunologia , Proteoma/metabolismo , Transcriptoma , Vibrioses/microbiologia , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Linguado/genética , Linguado/metabolismo , Linguado/microbiologia , Perfilação da Expressão Gênica , Imunidade , Proteoma/análise , Vibrio/fisiologia
9.
Sci Total Environ ; 747: 141238, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32799022

RESUMO

Marine heat waves and extreme high temperature become more frequent and intense in these years, which affected the survival of aquaculture animals. The ridgetail white prawn Exopalaemon carinicauda is an important economic species in eastern China, which has remarkable thermal tolerance. However, there has been little study of its thermal-adaptation mechanisms due to the complex genetic structure and unknown genome. To better understand the molecular mechanisms of E. carinicauda to adapt to the changing temperature, a combination of Illumina-based short reads RNA-seq and single molecule real-time-based full-length transcriptome sequencing was used in this study. In total, 17,212 unigenes from high-quality transcripts of E. carinicauda were generated and 14,663 complete ORFs were detected with an average length of 1980 bp. In addition, the transcriptome profiles of E. carinicauda treated with 34 °C heat stress for 6 and 24 h were analyzed. These differentially expressed genes were primarily enriched in oxidation-reduction process (Gene Ontology enrichment, GO) and the pathways of starch and sucrose metabolism (Kyoto Encyclopedia of Genes and Genomes enrichment, KEGG) after 6 h thermal stress, which indicated that E. carinicauda was suffering the attack by reactive oxygen species. After 24 h thermal stress, these differentially expressed genes were enriched in the pathway of lysosome, glycine, serine and threonine metabolism, fatty acid metabolism (KEGG), which indicated the oxidative stress was decreased. Interestingly, 40 genes for hemocyanin were found to be downregulated after 6 h heat stress, which indicated that the immunocompetence of E. carinicauda decreased after short term thermal stress (6 h). After 24 h thermal stress, E. carinicauda showed transcriptional adaptation to high temperature by upregulating of 11 genes encoding molecular chaperones, including HSP40 and HSP90 which were firstly reported to be related to thermal stress in E. carinicauda. These results promote a better understanding of the thermal-adaptation mechanism of E. carinicauda.


Assuntos
Palaemonidae , Penaeidae , Animais , China , Perfilação da Expressão Gênica , Palaemonidae/genética , Transcriptoma
10.
Artigo em Inglês | MEDLINE | ID: mdl-30861459

RESUMO

Acute heat stress is common in aquaculture and can affect diverse physiological processes in fish; however, different species of fish have various mechanisms for heat stress adaptation. In this study, we profiled the transcriptome responses of the Atlantic salmon (Salmo salar) to heat stress at 23 °C for 6 or 24 h, compared with that of fish at a normal temperature of 13 °C. The liver was selected as the target tissue for this analysis. A total of 243 and 88 genes were differentially expressed after 6 and 24 h of heat stress, respectively. Of these, only 22 were common to both time points, and most of these common genes were molecular chaperones such as heat shock cognate 71 kDa protein and heat shock protein 90-alpha. Genes such as activating transcription factor 6, calreticulin, protein disulfide isomerase A3, and protein kinase R-like endoplasmic reticulum kinase-eukaryotic initiation factor 2-alpha were only up-regulated after 6 h of heat stress; most of these genes are involved in the endoplasmic reticulum stress pathway. Indeed, endoplasmic reticulum stress was identified at 6 h but not at 24 h, suggesting that stress response plays an important role in the adaptation of Atlantic salmon to acute heat stress. Other up-regulated genes at 6 h were related to the insulin and nucleotide oligomerization domain-like receptor signaling pathways, which directly eliminate misfolded proteins and sustain sugar and lipid homeostasis. At 24 h, heat stress influenced the expression of steroid and terpenoid backbone biosynthesis, which may influence the sexual development and differentiation of Atlantic salmon. Overall, our results elucidate the transcriptome mechanisms that contribute to short-term heat tolerance in the liver of Atlantic salmon.


Assuntos
Resposta ao Choque Térmico , Salmo salar/genética , Transcriptoma , Adaptação Fisiológica , Animais , Aquicultura , Proteínas de Peixes/genética , RNA-Seq , Salmo salar/fisiologia
11.
IUBMB Life ; 71(7): 827-834, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30762928

RESUMO

The ubiquitin-proteasome system is the primary cellular pathway for protein degradation, mediating 80% of intracellular protein degradation. Because of the widespread presence of ubiquitin-modified protein substrates, ubiquitination can regulate a variety of cellular activities including cell proliferation, apoptosis, autophagy, endocytosis, DNA damage repair, and immune responses. With the continuous generation of genomics data in recent years it has become particularly important to analyze these data effectively and reasonably. Cacybp forms a complex with the E3 ubiquitinated ligase Siah1 to participate in ubiquitination. We analyzed Cacybp-associated genes using the Gene Expression Omnibus (GEO) and CGGA (Chinese Glioma Genome Atlas) databases and identified 121 differentially expressed genes (DEGs), of which 46 were downregulated and 75 were upregulated. The biological processes, molecular functions, and protein-protein interaction (PPI) network of differential genes were analyzed by Cytoscape software and STRING software. We found no difference in Cacybp expression among different grades of gliomas and there was no significant association between the expression level of Cacybp and the prognosis of patients with glioma in LGG and GBM. © 2019 IUBMB Life, 1-8, 2019.


Assuntos
Biomarcadores Tumorais/genética , Proteínas de Ligação ao Cálcio/metabolismo , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioma/metabolismo , Proteínas de Ligação ao Cálcio/genética , Bases de Dados Factuais , Feminino , Perfilação da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Mapas de Interação de Proteínas , Taxa de Sobrevida
12.
Medicine (Baltimore) ; 97(45): e13131, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30407337

RESUMO

RATIONALE: Childhood chronic myeloid leukemia (CCML) is a malignant disease of granulocyte abnormal hyperplasia that is caused by clonal proliferation of pluripotent stem cells. The condition is relatively rare, accounting for 2.0% to 3.0% of cases of childhood leukemia. In addition, the incidence of extramedullary blast crisis in CCML presenting as central nervous system (CNS) blast crisis remaining chronic phase of the disease in bone marrow is extremely unusual. PATIENT CONCERNS: We report a case of childhood chronic myelogenous leukemia that abandoned treatment, resulting in chronic myelogenous leukemia transforming into extramedullary blast crisis resulting in CNS leukemia, accompanied by the chronic phase of the disease in bone marrow. DIAGNOSES: Chronic myeloid leukemia extramedullary blast crisis presenting as CNS leukemia without blast crisis in bone marrow. INTERVENTIONS: Following high-dose systemic and intrathecal chemotherapy, the patient continued to do well. LESSONS: High-dose systemic and intrathecal chemotherapy is safe and helpful for CCML extramedullary blast crisis. A long-term follow-up is crucial.


Assuntos
Antineoplásicos/uso terapêutico , Crise Blástica/diagnóstico , Neoplasias do Sistema Nervoso Central/patologia , Crise Blástica/complicações , Crise Blástica/tratamento farmacológico , Medula Óssea/patologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética , Masculino
13.
J Mol Model ; 24(6): 124, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29721750

RESUMO

The mechanism for the hydroxyl-radical-induced depolymerization of cellulose under alkaline conditions in air was investigated using density functional theory at the B3LYP/6-31+G(d,p) level as well as electron transfer theory. The pathway for the depolymerization of cellulose was obtained theoretically and H abstraction from the C(3) atom of the pyran ring during the cleavage of the glucosidic bond was found to be the rate-limiting step due to its high energy barrier (16.81 kcal/mol) and low reaction rate constant (4.623 × 104 mol L-1 s-1). Calculations of the electron transfer between O2 and the saccharide radical performed with the HARLEM software package revealed that following the H abstraction, the oxygen molecule approaches C(2) on the saccharide radical and obtains an electron from the radical, even though no bond forms between the oxygen molecule and the radical. The rate constant for electron transfer could be as high as 1.572 × 1011 s-1. Furthermore, an enol intermediate is obtained during the final stage of the depolymerization.

14.
Comput Biol Chem ; 75: 82-90, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29751208

RESUMO

The toxic ginkgolic acids are the main safety concern for the application of Ginkgo biloba. In this study, the degradation ability of salicylic acid decarboxylase (SDC) for ginkgolic acids was examined using ginkgolic acid C15:1 as a substrate. The results indicated that the content of ginkgolic acid C15:1 in Ginkgo biloba seeds was significantly decreased after 5 h treatment with SDC at 40 °Cand pH 5.5. In order to explore the structure of SDC and the interaction between SDC and substrates, homology modeling, molecular docking and molecular dynamics were performed. The results showed that SDC might also have a catalytic active center containing a Zn2+. Compared with the template structure of 2,6-dihydroxybenzoate decarboxylase, the residues surrounding the binding pocket, His10, Phe23 and Phe290, were replaced by Ala10, Tyr27 and Tyr301 in the homology constructed structure of SDC, respectively. These differences may significantly affect the substrates adaptability of SDC for salicylic acid derivatives.


Assuntos
Carboxiliases/metabolismo , Salicilatos/metabolismo , Ácido Salicílico/metabolismo , Biocatálise , Carboxiliases/química , Modelos Moleculares , Salicilatos/química , Ácido Salicílico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...