Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 171182, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402983

RESUMO

Terrestrial gross primary productivity (GPP) is the key element in the carbon cycle process. Accurate GPP estimation hinges on the maximum carboxylation rate (Vcmax,025). The high uncertainty in deriving ecosystem-level Vcmax,025 has long hampered efforts toward the performance of the GPP model. Recently studies suggest the strong relationship between spectral reflectance and Vcmax,025. We proposed the multispectral surface reflectance-driven Vcmax,025 simulator using the fully connected deep neural network and built the hybrid modelling framework for GPP estimation by integrating the data-driven Vcmax,025 simulator in the process-based model. The performance of hybrid GPP model was evaluated at 95 flux sites. The result shows that the multispectral surface reflectance-driven Vcmax,025 simulator acquires the satisfactory estimation, with correlation coefficient (R), root mean square error (RMSE) and median absolute percentage error (MdAPE) ranging from 0.34 to 0.80, 14 to 43 µmol m-2 s-1 and 21 % to 66 % across different land cover types, respectively. The hybrid framework generates good GPP estimates with R, RMSE and MdAPE varying from 0.76 to 0.89, 1.79 to 6.16 µmol m-2 s-1 and 27 % to 90 %, respectively. Compared with EVI-driven method, the multispectral surface reflectance significantly improves the Vcmax,025 and GPP estimates, with MdAPE declining by 0.6 %-18 % and 1 % to 21 %, respectively. The Shapley value analysis reveals that red (620-670 nm), near-infrared (841-876 nm) and shortwave infrared (1628-1652 nm and 2105-2155 nm) are the key bands for Vcmax,025 estimation. This study highlights the potential of multispectral surface reflectance for quantifying ecosystem-level Vcmax,025. The new hybrid framework fully extracts the information of all available spectral bands using deep learning to reduce parameter uncertainty while maintains the description of photosynthetic process to ensure its physical reasonability. It can serve as a powerful tool for accurate global GPP estimation.

2.
Sci Total Environ ; 871: 161919, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736409

RESUMO

Evapotranspiration is a key consideration for addressing a number of scientific and engineering issues. There are considerable errors in current evapotranspiration models due to the high uncertainty in model parameters. Considering that evapotranspiration models maintain the same mathematical form when run on different timescales, we argue that the uncertainty in model parameters can be reduced by considering the parameter variability across different timescales. Here, the four key parameters in the energy balance-based evapotranspiration model, including aerodynamic roughness length, thermodynamic roughness length, surface conductance, and energy balance ratio, are retrieved and evaluated on instantaneous and daily timescales based on the observations from 113 sites in the FLUXNET2015 dataset. Then data-driven instantaneous and daily parameter models are built to estimate evapotranspiration. The results show that strong multi-timescale variability occurs in all four parameters. The coefficients of variation of the four instantaneous parameters range from 0.32 to 1.70. The links of parameters on different timescales are weak. The correlation coefficients of the daily mean value of instantaneous parameter values and daily parameter values vary from 0.44 to 0.83. By considering the multi-timescale variability of the parameters, the accuracy of evapotranspiration estimation can be largely improved, with RMSE of the instantaneous and daily evapotranspiration estimation decreasing from 35.76 to 9.52 W m-2 and from 12.01 to 3.01 W m-2, respectively. We also find that the parameter models perform well on their inherent timescales but degrade significantly when transferring to other timescales. This study proves the necessity of defining parameter variability across different timescales in evapotranspiration models and provides new insight into the model parameters.

3.
Sci Total Environ ; 834: 155369, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35461925

RESUMO

The nutrients availability determines efficiency of biological treatment systems, along with the structure and metabolism of microbiota. Herein nutrients deficiencies on aerobic granular sludge were comparatively evaluated, treating wastewater with mass ratios of chemical oxygen demand : nitrogen : phosphorus being 200:20:4, 200:2:4, and 200:20:0.4 (deemed as nutrient-balanced, nitrogen-deficient, and phosphorus-deficient), respectively. Results revealed that both nitrogen and phosphorus deficiencies significantly raised the effluent qualities especially nitrogen removal. However, nitrogen deficiency aroused considerable growth of filamentous bacteria, while granules kept compact structure under phosphorus deficient condition. Extracellular polymeric substances (EPS) also varied in contents and structures in response to different wastewaters. Microbial community structure analysis demonstrated that nitrogen deficiency led to lower richness and higher diversity, while the reverse was observed under phosphorus deficient condition. Nitrogen deficiency mainly induced decrease of nitrifying bacteria, while similarly phosphorus deficiency led to loss of phosphorus accumulating organisms. Dramatic enrichment Candidatus_Competibacter and filamentous Thiothrix were found under nutrients deficiencies, in which the latter explained and indicated filamentous bulking potential especially under nitrogen limited condition. Bacterial metabolism patterns verified the functions of microbial community responding to nutrients via PICRUSt2 prediction mainly by up-regulating cell motility, and cellular processes and signaling. This study could aid understanding of long-term stability of aerobic granular sludge for low-strength wastewater treatment.


Assuntos
Nitrogênio , Esgotos , Aerobiose , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/análise , Fósforo/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
4.
J Contam Hydrol ; 228: 103580, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31784038

RESUMO

The correct characterization of macro-scale contaminant transport and transformation rates is an important issue for modeling reactive transport in heterogeneous aquifers. While previous studies have investigated field-scale heterogeneity of transport and biochemical properties, the effects of local transverse dispersion on macro-scale transport and transformation rates have not been well understood. In this paper, the process of oxygen-limited biodegradation in a stratified aquifer is analysed by spectral perturbation approach, and longitudinal macrodispersivity, effective biodegradation rate, effective retardation factor and effective velocity are derived for the coupled transport equations of a system consisting of a contaminant and an oxidizing agent (oxygen). The effects of local transverse dispersion on these macro-scale coefficients are studied. It is shown that local transverse dispersion can smooth the heterogeneity in biodegradation and sorption processes and enlarge effective biodegradation rate and retardation factor. The local transverse dispersion can also limit the effects of heterogeneity in biodegradation process on longitudinal macrodispersivities and effective velocities for the contaminant and dissolved oxygen. But the effects of heterogeneity in sorption process on the contaminant macrodispersivity is likely to be magnified by local transverse dispersion.


Assuntos
Água Subterrânea , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Modelos Teóricos , Oxigênio
5.
Bioresour Technol ; 290: 121763, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31326648

RESUMO

The effect of temperature on pyrite-based autotrophic denitrification performance and conversion between N species under natural conditions was investigated by using dynamic-flow column experiment. Phosphate and bicarbonate were added trying to enhance denitrification performance when the temperature decreased to 20 °C. However, the temperature had a much more sensitive influence on the denitrification process than substances addition. NO3--N removal efficiency decreased with the decrease of temperature. When the temperature was higher than 20 °C, the NO2--N reduction process was more sensitive to the temperature drop, while the process of NO3--N to NO2--N was more sensitive to temperature drop when the temperature was lower than 20 °C. The different influence of temperature drop on the two processes led to changes of the distribution of NO3--N, NO2--N, and SO42--S along the column. However, the electron contribution of pyrite among the electron donors only changed slightly.


Assuntos
Desnitrificação , Nitratos , Processos Autotróficos , Ferro , Sulfetos
6.
Environ Sci Pollut Res Int ; 25(15): 14511-14520, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29525872

RESUMO

Anaerobic batch experiments were conducted to study the regulatory role of endogenous iron in greenhouse gas emissions under intensive nitrogen fertilization in subtropical soils of China. Fe2+, Fe3+, and NO3--N dynamics and N2O, CH4, and CO2 emissions, as well as the relationships between N fertilizer, endogenous iron, and greenhouse gas emissions were investigated. The emissions of N2O increased to different extents from all the test soils by N1 (260 mg N kg-1) application compared with N0. After 24 days of anaerobic incubation, the cumulative emissions of N2O from red soils in De'an (DR) were significantly higher than that from paddy soils in De'an (DP) and Qujialing (QP) under N1. However, N application enhanced CH4 and CO2 emissions from the red soils slightly but inhibited the emissions from paddy soils. The maximal CH4 and CO2 emission fluxes occurred in DP soil without N input. Pearson's correlation analysis showed that there were significant correlations (P < 0.01) between Fe2+ and Fe3+, NO3--N, (N2O + N2)-N concentrations in DP soil, implying that Fe2+ oxidation was coupled with nitrate reduction accompanied by (N2O + N2)-N emissions and the endogenous iron played a regulatory role in greenhouse gas emissions mainly through the involvement in denitrification. The proportion of the electrons donated by Fe2+ used for N2O production in denitrification in DP soil was approximately 37.53%. Moreover, positive correlations between Fe2+ and CH4, CO2 were found in both DR and QP soils, suggesting that endogenous iron might regulate the anaerobic decomposition of organic carbon to CH4 and CO2 in the two soils. Soil pH was also an important factor controlling greenhouse gas emissions by affecting endogenous iron availability and C and N transformation processes.


Assuntos
Fertilizantes/análise , Ferro/química , Nitratos/análise , Nitrogênio/análise , Solo/química , Dióxido de Carbono/análise , China , Desnitrificação , Gases de Efeito Estufa , Ferro/análise , Nitratos/química , Nitrogênio/química
7.
Water Resour Res ; 53(1): 361-375, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28943669

RESUMO

The effect of low-concentrations of monorhamnolipid biosurfactant on transport of Pseudomonas aeruginosa ATCC 9027 in natural porous media (silica sand and a sandy soil) was studied with miscible-displacement experiments using artificial groundwater as the background solution. Transport of two types of cells was investigated, glucose- and hexadecane-grown cells with lower and higher cell surface hydrophobicity (CSH), respectively. The effect of hexadecane presence as a residual non-aqueous phase liquid (NAPLs) on transport was also examined. A clean-bed colloid deposition model was used to calculate deposition rate coefficients (k) for quantitative assessment. Significant cell retention was observed in the sand (81% and 82% for glucose- and hexadecane-grown cells, respectively). Addition of a low-concentration rhamnolipid solution enhanced cell transport, with 40 mg/L of rhamnolipid reducing retention to 50% and 60% for glucose- and hexadecane-grown cells, respectively. The k values for both glucose- and hexadecane-grown cells correlate linearly with rhamnolipid-dependent CSH represented as bacterial-adhesion-to-hydrocarbon rate of cells. Retention of cells by the soil was nearly complete (>99%). Addition of 40 mg/L rhamnolipid solution reduced retention to 95%. The presence of NAPLs in the sand increased the retention of hexadecane-grown cells with higher CSH. Transport of cells in the presence of the NAPL was enhanced by rhamnolipid at all concentrations tested, and the relative enhancement was greater than in was in the absence of NAPL. This study shows the importance of hydrophobic interaction on bacterial transport in natural porous media and the potential of using low-concentration rhamnolipid for facilitating the transport in subsurface for bioaugmentation efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...