Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 387: 129694, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598802

RESUMO

This study investigated the impact of mature compost input on compost quality, greenhouse gases (GHGs, i.e. methane and nitrous oxide) and ammonia emissions during chicken manure and rice husk chicken manure co-composting. The experiment used different volumes of mature compost: 10% (T1), 20% (T2), and 30% (T3) to replace rice husk chicken manure. Results showed that mature compost enhanced compost maturity by promoting the activities of Bacillus, Caldicoprobacter, Thermobifida, Pseudogracilibacillus, Brachybacterium, and Sinibacillus. Compared to CK, T1, T2, and T3 reduced NH3 emission by 32.07%, 33.64%, and 56.12%, and mitigated 14.97%, 16.57%, and 26.18% of total nitrogen loss, respectively. Additionally, T2 and T3 reduced CH4 emission by 40.98% and 62.24%, respectively. The N2O emissions were positive correlation with Lactobacillus, Pseudogracilibacillus and ammonium nitrogen (p < 0.05), while T2 reducing total greenhouse effects. Therefore, replacing rice husk chicken manure with 20% mature compost is an efficient and promising approach for composting.


Assuntos
Bacillaceae , Compostagem , Oryza , Animais , Gases , Galinhas , Esterco , Nitrogênio
2.
Artigo em Inglês | MEDLINE | ID: mdl-36834281

RESUMO

Composting is a promising technology for treating organic solid waste. However, greenhouse gases (methane and nitrous oxide) and odor emissions (ammonia, hydrogen sulfide, etc.) during composting are practically unavoidable, leading to severe environmental problems and poor final compost products. The optimization of composting conditions and the application of additives have been considered to mitigate these problems, but a comprehensive analysis of the influence of these methods on gaseous emissions during composting is lacking. Thus, this review summarizes the influence of composting conditions and different additives on gaseous emissions, and the cost of each measure is approximately evaluated. Aerobic conditions can be achieved by appropriate process conditions, so the contents of CH4 and N2O can subsequently be effectively reduced. Physical additives are effective regulators to control anaerobic gaseous emissions, having a large specific surface area and great adsorption performance. Chemical additives significantly reduce gaseous emissions, but their side effects on compost application must be eliminated. The auxiliary effect of microbial agents is not absolute, but is closely related to the dosage and environmental conditions of compost. Compound additives can reduce gaseous emissions more efficiently than single additives. However, further study is required to assess the economic viability of additives to promote their large-scale utilization during composting.


Assuntos
Compostagem , Gases de Efeito Estufa , Gases/análise , Compostagem/métodos , Amônia/análise , Gases de Efeito Estufa/análise , Resíduos Sólidos/análise , Óxido Nitroso/análise , Solo/química
3.
Plant Physiol Biochem ; 183: 96-110, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35576892

RESUMO

Soil salinity has become a major threat to land degradation worldwide. The application of organic amendments is a promising alternative to restore salt-degraded soils and alleviate the deleterious effects of soil salt ions on crop growth and productivity. The aim of present study was to explore the potential impact of biochar and vermicompost, applied individually or in combination, on soil enzyme activity and the growth, yield and quality of Hybrid Pennisetum plants suffered moderate salt stress (5.0 g kg-1 NaCl in the soil). Our results showed that biochar and/or vermicompost promoted Na+ exclusion and K+ accumulation, relieved stomatal limitation, increased leaf pigment contents, enhanced electron transport efficiency and net photosynthesis, improved root activity, and minimized the oxidative damage in Hybrid Pennisetum caused by soil salinity stress. In addition, soil enzymes were also activated by biochar and vermicompost. These amendments increased the biomass and crude protein content, and decreased the acid detergent fiber and neutral detergent fiber contents in salt-stressed Hybrid Pennisetum. Biochar and vermicompost addition increased the biomass and quality of Hybrid Pennisetum due to the direct effects related to plant growth parameters and the indirect effects via soil enzyme activity. Finally, among the different treatments, the use of vermicompost showed better results than biochar alone or the biochar-compost combination did, suggesting that the addition of vermicompost to the soil is an effective and valuable method for reclamation of salt-affected soils.


Assuntos
Pennisetum , Solo , Carvão Vegetal , Detergentes , Plantas
4.
PeerJ ; 10: e13087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35291483

RESUMO

Background: As a fundamental metabolism, leaf photosynthesis not only provides necessary energy for plant survival and growth but also plays an important role in global carbon fixation. However, photosynthesis is highly susceptible to environmental stresses and can be significantly influenced by future climate change. Methods: In this study, we examined the photosynthetic responses of Phragmites australis (P. australis) to three precipitation treatments (control, decreased 30%, and increased 30%) under two thermal regimes (ambient temperature and +4 °C) in environment-controlled chambers. Results: Our results showed that the net CO2 assimilation rate (P n), maximal rate of Rubisco (V cmax), maximal rate of ribulose-bisphosphate (RuBP) regeneration (J max) and chlorophyll (Chl) content were enhanced under increased precipitation condition, but were declined drastically under the condition of water deficit. The increased precipitation had no significant effect on malondialdehyde (MDA) content (p > 0.05), but water deficit drastically enhanced the MDA content by 10.1%. Meanwhile, a high temperature inhibited the positive effects of increased precipitation, aggravated the adverse effects of drought. The combination of high temperature and water deficit had more detrimental effect on P. australis than a single factor. Moreover, non-stomatal limitation caused by precipitation change played a major role in determining carbon assimilation rate. Under ambient temperature, Chl content had close relationship with P n (R2 = 0.86, p < 0.01). Under high temperature, P n was ralated to MDA content (R2 = 0.81, p < 0.01). High temperature disrupted the balance between V cmax and J max (the ratio of J max to V cmax decreased from 1.88 to 1.12) which resulted in a negative effect on the photosynthesis of P. australis. Furthermore, by the analysis of Chl fluorescence, we found that the xanthophyll cycle-mediated thermal dissipation played a major role in PSII photoprotection, resulting in no significant change on actual PSII quantum yield (Φ PSII) under both changing precipitation and high temperature conditions. Conclusions: Our results highlight the significant role of precipitation change in regulating the photosynthetic performance of P. australis under elevated temperature conditions, which may exacerbate the drought-induced primary productivity reduction of P. australis under future climate scenarios.


Assuntos
Fotossíntese , Poaceae , Temperatura , Folhas de Planta/metabolismo , Clorofila/metabolismo , Água/metabolismo
5.
Ecotoxicol Environ Saf ; 231: 113155, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35007831

RESUMO

Microplastics (MPs), as emerging "new generation" organic contaminants, have attracted extensive attention regarding their severe toxicity to aquatic and terrestrial organisms. However, the responses of plant photosynthesis to soil MP pollution are unclear. In this study, Nicotiana tabacum seedlings were grown in soils containing 0~1000 g·kg-1 polyethylene (PE)-MPs for 48 days. PE-MPs significantly increased the superoxide anion content by 15.3~44.8% but decreased the chlorophyll content and Rubisco activity by 4.3~14.0% and 4.23~30.9%, respectively. PE-MPs also inhibited RuBP carboxylation activation and regeneration, restrained light use efficiency, and prevented dark respiration, thereby reducing the light-saturated photosynthesis rate. The changed shape of OJIP transients indicated that PE-MP toxicity inhibited not only the primary photochemistry rate but also photoelectrochemical quenching, resulting in decreased quantum yields. RNA-Seq revealed thousands of differentially expressed genes (DEGs), among which 79 highly expressed DEGs were enriched in photosynthesis-related processes. Functional annotation revealed that the reduction in environment stress was mainly due to the repressed expression of light harvesting-, electron transport- and photosystem-related genes in chloroplasts. This study regarding the physiological and molecular responses of photosynthetic performance to soil PE-MP pollution provides a new viewpoint for exploring the plant photosynthesis regulating and protective mechanisms under soil MP stresses.


Assuntos
Microplásticos , Plântula , Clorofila , Perfilação da Expressão Gênica , Fotossíntese , Folhas de Planta , Plásticos , Plântula/genética , Nicotiana
6.
Environ Sci Pollut Res Int ; 28(14): 17981-17991, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33405112

RESUMO

This study compared different types and addition amounts of phosphorous additives on nitrogen conservation and maturity during pig manure composting. Phosphogypsum and superphosphate were applied with the same amount of phosphorus (5% of the initial total nitrogen, molar basis) or weight (10% of initial dry matter) and compared to a control treatment without additives. Results show that phosphorous additives could effectively conserve nitrogen. Adding phosphogypsum could significantly reduce NH3 emission and total nitrogen loss, but increase N2O emission. Application of 10% superphosphate mitigated NH3 emissions and total nitrogen loss but inhibited the organic matter degradation and compost maturity. More importantly, with the addition of 5% initial total nitrogen (i.e., 2.5% dry matter), superphosphate could synchronously reduce NH3 and N2O emissions and improve compost quality by introducing additional nutrients into the compost. In comprehensive evolution of gaseous emissions, nitrogen loss, and compost maturity, superphosphate addition with 2.5% of initial dry matter was suggested to be used in practice.


Assuntos
Compostagem , Animais , Esterco , Nitrogênio , Fósforo , Solo , Suínos
7.
J Exp Biol ; 223(Pt 18)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32737214

RESUMO

Optimal concentrations for nectar drinking are limited by the steep increase in the viscosity of sugar solutions with concentration. However, nectar viscosity is inversely related to temperature, which suggests there are advantages to foraging from flowers that are warmer than the surrounding air. The honey bee (Apis mellifera L.) dips nectar using a hairy tongue. However, the microscopic dynamics of the tongue while the bee ingests nectar of varying concentration, viscosity and temperature are unknown. In this study, we found that honey bees respond to the variation of nectar properties by regulating dipping frequency. Through high-speed imaging, we discovered that the honey bee traps warmer sucrose solutions with a quicker tongue. The honey bee dips the warmest and most dilute solution (40°C and 25% w/w sucrose) 1.57 times as fast as the coldest and thickest solution (20°C and 45% w/w sucrose). When the viscosity of different sucrose concentrations was kept constant by adding the inert polysaccharide Tylose, honey bees dipped nectar at constant frequency. We propose a fluid mechanism model to elucidate potential effects on sucrose intake and show that higher dipping frequency can increase the volumetric and energetic intake rates by 125% and 15%, respectively. Our findings broaden insights into how honey bees adapt to foraging constraints from the perspective of tongue dynamics, and demonstrate that elevated intrafloral temperatures and lower nectar viscosity can improve the volumetric and energetic intake rates of pollinators.


Assuntos
Ingestão de Alimentos , Néctar de Plantas , Animais , Abelhas , Flores , Língua , Viscosidade
8.
J Theor Biol ; 484: 110017, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31542476

RESUMO

Bees (Apidae) are flower-visiting insects that possess highly efficient mouthparts for the ingestion of nectar and other sucrose fluids. Their mouthparts are composed of mandibles and a tube-like proboscis. The proboscis forms a food canal, which encompasses a protrusible and hairy tongue to load and imbibe nectar, representing a fluid-feeding technique with a low Reynolds number. The western honey bee, Apis mellifera ligustica, can rhythmically erect the tongue microtrichia to regulate the glossal shape, achieving a tradeoff between nectar intake rate and viscous drag. Neotropical orchid bees (Euglossa imperialis) possess a proboscis longer than the body and combines this lapping-sucking mode of fluid-feeding with suction feeding. This additional technique of nectar uptake may have different biophysics. In order to reveal the effect of special structures of mouthparts in terms of feeding efficiency, we build a temporal model for orchid bees considering fluid transport in multi-states including active suction, tongue protraction and viscous dipping. Our model indicates that the dipping technique employed by honey bees can contribute to more than seven times the volumetric and energetic intake rate at a certain nectar concentration compared with the combined mode used by orchid bees. The high capability of the honey bee's proboscis to ingest nectar may inspire micropumps for transporting viscous liquid with higher efficiency.


Assuntos
Abelhas , Comportamento Alimentar , Modelos Biológicos , Animais , Abelhas/anatomia & histologia , Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Flores , Néctar de Plantas , Tempo , Língua/anatomia & histologia
9.
Ying Yong Sheng Tai Xue Bao ; 25(7): 1949-54, 2014 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-25345044

RESUMO

In order to resolve the problem of poor permeability of sewage sludge compost (SSC) which was used as the substitution of peat, perlite was used to regulate the permeability of the sewage. The pure SSC was used as control. The proportions of perlite in the mixtures with SSC were 20%, 40%, 60%, 80% and 100% (V/V), respectively. The effects of different perlite ratios on the physical and chemical properties and the growth of Tagetes patula were studied. The bulk density, water holding porosity and water holding porosity to aeration porosity decreased, but the total porosity and aeration porosity increased with the increasing addition of perlite to the SSC. For the chemical properties, the pH increased, and the EC and nutrient contents decreased with the increasing addition of perlite to the SSC. The aboveground biomass and flowers of T. patula were the highest in the 60% perlite treatment, and the lowest in the pure SSC treatment. The root morphology and activity were the best in the 40%, 60% and 80% perlite treatments. Aeration was the strongest factor to impact the maximum root length and average root diameter. Perlite promoted the growth of T. patula mainly through impacting the physical properties of the SSC. The addition of 60% perlite to the SSC could significantly improve the poor aeration and decrease the high salinity greatly in the SSC and regulate the growth of the root and aboveground of T. patula.


Assuntos
Óxido de Alumínio , Esgotos , Dióxido de Silício , Solo/química , Tagetes/crescimento & desenvolvimento , Biomassa , Flores/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Porosidade , Salinidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...