Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(14): 146402, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640367

RESUMO

We demonstrate the existence of a nonequilibrium "Floquet Fermi liquid" state arising in partially filled Floquet Bloch bands weakly coupled to ideal fermionic baths, which possess a collection of "Floquet Fermi surfaces" enclosed inside each other, resembling matryoshka dolls. We elucidate several properties of these states, including their quantum oscillations under magnetic fields which feature slow beating patterns of their amplitude reflecting the different areas of the Floquet Fermi surfaces, consistent with those observed in microwave induced resistance oscillation experiments. We also investigate their specific heat and thermodynamic density of states and demonstrate how by controlling properties of the drive, such as its frequency, one can tune some of the Floquet Fermi surfaces toward nonequilibrium Van Hove singularities without changing the electron density.

2.
Phys Rev Lett ; 126(19): 197402, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047609

RESUMO

The nonlinear shift current, also known as the bulk photovoltaic current generated by linearly polarized light, has long been known to be absent in crystals with inversion symmetry. Here we argue that a nonzero shift current in centrosymmetric crystals can be activated by a photon-drag effect. Photon-drag shift current proceeds from a "shift current dipole" (a geometric quantity characterizing interband transitions) and manifests a purely transverse response in centrosymmetric crystals. This transverse nature proceeds directly from the shift-vector's pseudovector nature under mirror operation and underscores its intrinsic geometric origin. Photon-drag shift current can be greatly enhanced by coupling to polaritons and provides a new and sensitive tool to interrogate the subtle interband coherences of materials with inversion symmetry previously thought to be inaccessible via photocurrent probes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32012015

RESUMO

Light field image (LFI) quality assessment is becoming more and more important, which helps to better guide the acquisition, processing and application of immersive media. However, due to the inherent high dimensional characteristics of LFI, the LFI quality assessment turns into a multi-dimensional problem that requires consideration of the quality degradation in both spatial and angular dimensions. Therefore, we propose a novel Tensor oriented No-reference Light Field image Quality evaluator (Tensor-NLFQ) based on tensor theory. Specifically, since the LFI is regarded as a low-rank 4D tensor, the principal components of four oriented sub-aperture view stacks are obtained via Tucker decomposition. Then, the Principal Component Spatial Characteristic (PCSC) is designed to measure the spatial-dimensional quality of LFI considering its global naturalness and local frequency properties. Finally, the Tensor Angular Variation Index (TAVI) is proposed to measure angular consistency quality by analyzing the structural similarity distribution between the first principal component and each view in the view stack. Extensive experimental results on four publicly available LFI quality databases demonstrate that the proposed Tensor-NLFQ model outperforms state-of-the-art 2D, 3D, multi-view, and LFI quality assessment algorithms.

4.
Sci Adv ; 5(10): eaax6550, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31667347

RESUMO

Quantum oscillations provide a notable visualization of the Fermi surface of metals, including associated geometrical phases such as Berry's phase, that play a central role in topological quantum materials. Here we report the existence of a new quantum oscillation phase shift in a multiband system. In particular, we study the ABA-trilayer graphene, the band structure of which is composed of a weakly gapped linear Dirac band, nested within a quadratic band. We observe that Shubnikov-de Haas (SdH) oscillations of the quadratic band are shifted by a phase that sharply departs from the expected 2π Berry's phase and is inherited from the nontrivial Berry's phase of the linear band. We find this arises due to an unusual filling enforced constraint between the quadratic band and linear band Fermi surfaces. Our work indicates how additional bands can be exploited to tease out the effect of often subtle quantum mechanical geometric phases.

5.
Phys Rev Lett ; 122(6): 066602, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822071

RESUMO

In periodic media, despite the close relationship between geometrical effects in the bulk and topological surface states, the two are typically probed separately. We show that when beams in a Weyl medium reflect off an interface with a gapped medium, the trajectory is influenced by both bulk geometrical effects and the Fermi arc surface states. The reflected beam experiences a displacement, analogous to the Goos-Hänchen or Imbert-Fedorov shifts, that forms a half-vortex in the two-dimensional surface momentum space. The half-vortex is centered where the Fermi arc of the reflecting surface touches the Weyl cone, with the magnitude of the shift scaling as an inverse square root away from the touching point, and diverging at the touching point. This striking feature provides a way to use bulk transport to probe the topological characteristics of a Weyl medium.

7.
ISA Trans ; 62: 87-93, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27126601

RESUMO

This paper presents a formalization of a fractional order linear system in a higher-order logic (HOL) theorem proving system. Based on the formalization of the Grünwald-Letnikov (GL) definition, we formally specify and verify the linear and superposition properties of fractional order systems. The proof provides a rigor and solid underpinnings for verifying concrete fractional order linear control systems. Our implementation in HOL demonstrates the effectiveness of our approach in practical applications.

8.
Phys Rev Lett ; 115(16): 166804, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26550894

RESUMO

We propose a light-induced spin Hall effect for interlayer exciton gas in monolayer MoSe2-WSe2 van der Waals heterostructure. By applying two infrared, spatially varying laser beams coupled to the exciton internal states, a spin-dependent gauge potential on the exciton center-of-mass motion is induced. This gauge potential deflects excitons in different spin states towards opposite directions, leading to a finite spin current but vanishing mass current. In the Hall bar geometry, the spin-dependent deflection gives rise to spin-dependent chiral edge states with spin-velocity locking. The spin current and chiral edge states of the excitons can be detected by spatially resolved photoluminescence spectroscopy.

9.
Sci Rep ; 5: 15266, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26471126

RESUMO

Based on the Born-Oppemheimer approximation, we divide the total electron Hamiltonian in a spin-orbit coupled system into the slow orbital motion and the fast interband transition processes. We find that the fast motion induces a gauge field on the slow orbital motion, perpendicular to the electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/InxGa1-xAs/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of the antidot lattices, the band folding caused by the antidot potential leads to the formation of minibands and band inversions between neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...