Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38786222

RESUMO

Problems with minced pork include water release and low gel strength. This study aimed to investigate the effect of treatments with κ-carrageenan (κ-CAR), egg white powder (EWP), wheat gluten (WG), soy isolate protein (SPI), and a combination of these treatments on the gel properties and protein structures of minced pork. The cooking loss and trapped water within minced pork increased when additives were incorporated; in particular, the SPI group reached 1.31 ± 0.01% and 91.42 ± 0.20%. The hardness and chewiness of minced pork reached their maximum values (38.91 ± 0.80 N, 14.73 ± 0.41 N) when the WG was added. The κ-CAR/WG-minced pork gel network structure was the densest and most stable, characterized by increased hydrophobic interactions, disulfide bonds in the mince gel, and enthalpy value. The α-helix content with κ-CAR/WG treatment decreased from 27% to 7.8%, transforming into other secondary structures. This suggests that the addition of κ-CAR/WG can be a more effective combination for improving the quality of minced pork.

2.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649857

RESUMO

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Giberelinas/metabolismo , Regiões Promotoras Genéticas/genética , Etilenos/metabolismo
3.
Heliyon ; 10(3): e25711, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371985

RESUMO

Background: The potential effect of removing danger-associated molecular patterns (DAMPs) from gut lymph on reducing acute lung injury (ALI) induced by gut ischemia-reperfusion injury (GIRI) is uncertain. This study aimed to investigate whether gut lymph purification (GLP) could improve GIRI-induced acute lung injury in rats by clearing danger-associated molecular patterns. Materials and methods: Rats were divided into four groups: Sham, GIRI, GIRI + gut lymph drainage (GLD), and GIRI + GLP. After successful modeling, lung tissue samples were collected from rats for hematoxylin-eosin (HE) staining and detection of apoptotic indexes. We detected the DAMPs levels in blood and lymph samples. We observed the microstructure of AEC Ⅱ and measured the expression levels of apoptosis indexes. Results: The GIRI group showed destruction of alveolar structure, thickened alveolar walls, and inflammatory cell infiltration. This was accompanied by significantly increased levels of high mobility group protein-1 (HMGB-1) and Interleukin-6 (IL-6), while reduced levels of heat shock protein 70 (HSP 70) and Interleukin-10 (IL-10) in both lymph and serum. In contrast, the lung tissue damage in the GIRI + GLP group was significantly improved compared to the GIRI group. This was evidenced by a reduction in the expression levels of HMGB-1 and IL-6 in both lymph and serum and an increase in HSP 70 and IL-10 levels. Additionally, organelle structure of AEC II was significantly improved in the GIRI + GLP group compared to the GIRI group. Conclusions: GLP inhibits inflammation and cell apoptosis in GIRI-induced ALI by blocking the link between DAMPs and mononuclear phagocytes, reducing the severity of ALI.

4.
Int J Environ Health Res ; : 1-13, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385345

RESUMO

The deleterious impact of lead (Pb) pollution on human health is evident in both domestic and occupational settings, provoking an inflammatory response across multiple tissue, limited attention has been devoted to its adverse effects on colitis and the underlying mechanisms. Peiminine (PMI) has been recognized for its anti-inflammatory properties, yet its specific anti-inflammatory effects in lead-induced colitis models remain elusive. Through the establishment of both in vivo and in vitro lead exposure models, suggests that lead exposure can induce colitis and that PMI regulates lead exposure-induced colitis by inhibiting the NF-kB signaling pathway, and alleviates the ability of lead to apoptosis and inflammation levels in intestinal epithelial cells. Consequently, these results present a promising avenue for further exploration of the molecular mechanisms underlying lead-induced colitis, evaluation of the associated risks linked to lead exposure, and the development of therapeutic interventions for colitis resulting from lead exposure.

5.
ACS Sens ; 8(12): 4655-4663, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38010352

RESUMO

Experimentally, Cas12a can recognize multiple protospacer adjacent motif (PAM) sequences and is not restricted to the "TTTN". However, the application of the CRISPR/Cas12a system is still limited by the PAM for double-stranded DNA (dsDNA). Here, we developed asymmetric RPA (Asy-RPA) to completely break the limitations of PAM. Asy-RPA not only achieved efficient amplification but also converted dsDNA to single-stranded DNA (ssDNA) without complicated steps. The ssDNA products activated the trans-cleavage activity of Cas12a, outputting signals. The application of Asy-RPA completely freed Cas12a from the PAM, which can be more widely used in nucleic acid detection, such as lumpy skin disease virus, with an actual detection limit as low as 1.21 × 101 copies·µL-1. More importantly, Cas12a was intolerant to mutations on ssDNA. This provided technical support for the detection and identification of wild-type Mycobacterium tuberculosis (WT-TB) and rifampin-resistant mutant-type M. tuberculosis (MT-TB). The detection limit was as low as 1 fM for 1% mixed samples. The detection and availability of different treatment options for treatment-resistant and WT-TB were significant for the elimination of TB. In summary, the platform consisting of Asy-RPA and CRISPR/Cas12a was suitable for the detection of various viruses and bacteria and was a boon for the detection of dsDNA without recognizable PAM.


Assuntos
Sistemas CRISPR-Cas , Mycobacterium tuberculosis , Animais , Bovinos , Sistemas CRISPR-Cas/genética , Mutação , DNA de Cadeia Simples/genética , Rifampina
6.
Hortic Res ; 10(10): uhad174, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37841501

RESUMO

Recognized as a pivotal developmental transition, flowering marks the continuation of a plant's life cycle. Vernalization and photoperiod are two major flowering pathways orchestrating numerous florigenic signals. Methylation, including histone, DNA and RNA methylation, is one of the recent foci in plant development. Considerable studies reveal that methylation seems to show an increasing potential regulatory role in plant flowering via altering relevant gene expression without altering the genetic basis. However, little has been reviewed about whether and how methylation acts on vernalization- and photoperiod-induced flowering before and after FLOWERING LOCUS C (FLC) reactivation, what role RNA methylation plays in vernalization- and photoperiod-induced flowering, how methylation participates simultaneously in both vernalization- and photoperiod-induced flowering, the heritability of methylation memory under the vernalization/photoperiod pathway, and whether and how methylation replaces vernalization/photoinduction to regulate flowering. Our review provides insight about the crosstalk among the genetic control of the flowering gene network, methylation (methyltransferases/demethylases) and external signals (cold, light, sRNA and phytohormones) in vernalization and photoperiod pathways. The existing evidence that RNA methylation may play a potential regulatory role in vernalization- and photoperiod-induced flowering has been gathered and represented for the first time. This review speculates about and discusses the possibility of substituting methylation for vernalization and photoinduction to promote flowering. Current evidence is utilized to discuss the possibility of future methylation reagents becoming flowering regulators at the molecular level.

7.
Anal Chem ; 95(27): 10414-10421, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37367936

RESUMO

The samples were difficult to accurately determine positive or negative between 35 and 40 cycles by real-time quantitative PCR (qPCR) as the standard method. Here, we developed one-tube nested recombinase polymerase amplification (ONRPA) technology with CRISPR/Cas12a to overcome this difficulty. ONRPA broke the amplification plateau to substantially enhance the signals, which considerably improved the sensitivity and eliminated the problem of gray area. Using two pairs of primers one after another, it improved precision by lowering the probability of magnifying several target zones, which was completely free of contamination by nonspecific amplification. This was important in nucleic acid testing. Finally, by the CRISPR/Cas12a system as a terminal output, the approach achieved a high signal output as few as 2.169 copies·µL-1 in 32 min. ONRPA was 100-fold more sensitive than conventional RPA and 1000-fold compared to qPCR. ONRPA coupled with CRISPR/Cas12a will be an important and new promoter of RPA in clinical applications.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Recombinases , Recombinases/genética , Razão Sinal-Ruído , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Nucleotidiltransferases , Reação em Cadeia da Polimerase em Tempo Real
8.
Anal Chim Acta ; 1267: 341391, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257965

RESUMO

Capripoxvirus (CaPV) contains three viruses that have caused massive losses in the livestock and dairy industries. Accurate CaPV differentiation has far-reaching implications for effectively controlling outbreaks. However, it has a great challenge to distinguishing three viruses due to high homology of 97%. Here, we established a sensitive CRISPR/Cas12a array based on Multiple-recombinase polymerase amplification (M-RPA) for CaPV differentiation, which provided a more comprehensive and accurate differentiation mode targeting VARV B22R and RPO30 genes. By sensitive CRISPR/Cas12a and M-RPA, the actual detection limits of three viruses were as low as 50, 40 and 60 copies, respectively. Moreover, Lateral flow dipstick (LFD) array based on CRISPR/Cas12a achieved portable and intuitive detection, making it suitable for point-of-care testing. Therefore, CRISPR/Cas12a array and LFD array paved the way for CaPV differentiation in practice. Additionally, we constructed a real-time quantitative PCR (qPCR) array to fill the qPCR technical gap in differentiation and to facilitate the quarantine departments.


Assuntos
Capripoxvirus , Infecções por Poxviridae , Animais , Capripoxvirus/genética , Infecções por Poxviridae/diagnóstico , Cabras/genética , Reação em Cadeia da Polimerase em Tempo Real , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade
9.
Plant Sci ; 324: 111431, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36028071

RESUMO

Flowering is the most critical transition period in the whole lifecycle of plants, and it is a highly sensitive period to stress. New combinations of temperature, drought stress, carbon dioxide and other abiotic/biotic conditions resulting from contemporary climate change affect the flowering process. Plants have evolved several strategies to deal with environmental stresses, including epigenetic modifications. Numerous studies show that environmental stresses trigger methylation/demethylation during flowering to preserve/accelerate plant lifecycle. What's more, histone and DNA methylation can be induced to respond to stresses, resulting in changes of flowering gene expression and enhancing stress tolerance in plants. Furthermore, RNA methylation may influence stress-regulated flowering by regulating mRNA stability and antioxidant mechanism. Our review presents the involvement of methylation in stress-repressed and stress-induced flowering. The crosstalk between methylation and small RNAs, phytohormones and exogenous substances (such as salicylic acid, nitric oxide) during flowering under different stresses were discussed. The latest regulatory evidence of RNA methylation in stress-regulated flowering was collected for the first time. Meanwhile, the limited evidences of methylation in biotic stress-induced flowering were summarized. Thus, the review provides insights into understanding of methylation mechanism in stress-regulated flowering and makes use for the development of regulating plant flowering at epigenetic level in the future.


Assuntos
Histonas , Reguladores de Crescimento de Plantas , Antioxidantes/metabolismo , Dióxido de Carbono/metabolismo , DNA/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Óxido Nítrico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , RNA , Ácido Salicílico , Estresse Fisiológico/genética
10.
Appl Microbiol Biotechnol ; 106(12): 4607-4616, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35708748

RESUMO

The livestock industry has been deeply affected by African swine fever virus (ASFV) and Capripoxvirus (CaPV), which caused an enormous economic damage. It is emergent to develop a reliable detection method. Here, we developed a rapid, ultra-sensitive, and one-pot DNA detection method combining recombinase polymerase amplification (RPA) and CRISPR/Cas12a for ASFV and CaPV, named one-pot-RPA-Cas12a (OpRCas) platform. It had the virtue of both RPA and CRISPR/Cas12a, such as high amplification efficiency, constant temperature reaction, and strict target selectivity, which made diagnosis simplified, accurate and easy to be operated without expensive equipment. Meanwhile, the reagents of RPA and CRISPR/Cas12a were added to the lid and bottom of tube in one go, which overcame the incompatibility of two reactions and aerosol contamination. To save cost, we only need a quarter of the amount of regular RPA per reaction which is enough to achieve clinical diagnosis. The OpRCas platform was 10 to 100 times more sensitive than qPCR; the limit of detection (LOD) was as low as 1.2 × 10-6 ng/µL (3.07 copies/µL by ddPCR) of ASFV and 7.7 × 10-5 ng/µL (1.02 copies/µL by ddPCR) of CaPV with the portable fluorometer in 40 min. In addition, the OpRCas platform combined with the lateral flow assay (LFA) strip to suit for point-of-care (POC) testing. It showed 93.3% consistency with qPCR for clinical sample analysis. Results prove that OpRCas platform is an easy-handling, ultra-sensitive, and rapid to achieve ASFV and CaPV POC testing. KEY POINTS: • The platform realizes one-pot reaction of RPA and Cas12a. • Sensitivity is 100 times more than qPCR. • Three output modes are suitable to be used to quantitative test or POC testing.


Assuntos
Vírus da Febre Suína Africana , Recombinases , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Sistemas CRISPR-Cas , Técnicas de Amplificação de Ácido Nucleico/métodos , Nucleotidiltransferases , Reação em Cadeia da Polimerase em Tempo Real , Recombinases/genética , Sensibilidade e Especificidade , Suínos
11.
Anal Chim Acta ; 1191: 339330, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35033236

RESUMO

Capripoxvirus (CaPV) is one of the common skin diseases infecting cattle and sheep which can cause serious economic losses. Establishing ultra-sensitive, rapid, and point-of-care detection of CaPV is particularly important for hindering its spread. Here, we use the principle that CRISPR/Cpf1 can specifically recognize the target DNA and activate its trans-cleavage activity to identify the CaPV product amplified by loop-mediated amplification (LAMP). Under the designed specific primers, a set of LAMP which can amplify CaPV specifically was established and optimized firstly. Then, the CRISPR/Cpf1 was introduced to identify LAMP products. LAMP can be completed at a constant temperature, thus avoiding the use of temperature-variable instruments, making it possible to detect viruses outside the laboratory. To further satisfy the point-of-care detection of CaPV, we introduced a portable fluorometer and CRISPR-based lateral flow test. Due to the introduction of CRISPR/Cpf1, the sensitivity of the method is greatly increased, which is of great significance for the early detection of viruses. Through CRISPR/Cpf1-mediated fluorescence detection, we can detect CaPV as low as 1.47 × 10-3 TCID50 in 50 min, 1000 times more sensitive than quantitative real-time PCR. Through CRISPR-based lateral flow test, we can visually detect CaPV as low as 1.47 × 10-2 TCID50. Besides, this strategy can be used for the primary samples obtained from the cell culture of CaPV after simple ultrasonic disruption, which eliminates the complicated nucleic acid extraction steps required by traditional methods.


Assuntos
Capripoxvirus , Animais , Capripoxvirus/genética , Bovinos , Primers do DNA , Técnicas de Amplificação de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Ovinos
12.
Transbound Emerg Dis ; 69(4): 1813-1823, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34033246

RESUMO

Lumpy skin disease (LSD) is a devastating viral disease that occurs in cattle. In China, it was first detected in the Xin-Jiang autonomous region, near the border with Kazakhstan, in August 2019. As there were no new occurrences of LSD in either country following the first detection, the initial introduction of the virus remains unknown. Arthropod vectors were considered as potential vectors. Consequently, to identify the arthropod vectors involved in transmitting LSD virus (LSDV), an insect surveillance campaign was launched at four different sites scattered along the border, and samples from 22 flying insect species were collected and subjected to PCR assays. Following the Agianniotaki LSDV vaccine and Sprygin's general LSDV assays, two kinds of non-biting flies, namely, Musca domestica L and Muscina stabulans, were positive for LSDV. However, all the other insects tested negative. Viral DNA was only detected in wash fluid, implying body surface contamination of the virus. The negative test results suggest that non-biting flies are the dominant insects involved in the observed local epidemic. Three genomic regions encoding RPO30, GPCR, and LW126 were successfully sequenced and subjected to phylogenetic analysis. The sequences shared high homology with LSDV/Russia/Saratov/2017, a recombinant vaccine-like strain formerly identified in Russia, and clustered with LSDV vaccine strains in phylogenetic trees of RPO30 and LW126. However, the GPCR gene was seen to be solely clustered with LSDV field strains, implying differences in host affinity between these closely related vaccine-like strains. Despite this, there is no direct evidence to support cross-border transmission of the vaccine-like LSDV. To our knowledge, this is the first report of vaccine-like LSDV DNA detection in non-biting flies in China.


Assuntos
Doenças dos Bovinos , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/prevenção & controle , Filogenia , Vacinas Atenuadas
13.
Phys Chem Chem Phys ; 23(8): 4669-4680, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33595560

RESUMO

The structural, electronic and magnetic properties of the T-phase and H-phase of the VS2 monolayer and their heterobilayers are studied by means of first-principles calculations. We find that the two phases of the VS2 monolayer are both ferromagnetic (FM) semiconductors and that these two monolayers form a typical van der Waals (vdW) heterostructure with a weak interlayer interaction. By comparing the energy of different magnetic configurations, the FM state of the tVS2/hVS2 heterostructure is found to be in the ground state under normal conditions or biaxial strains. Under compressive strains, the anti-FM (AFM) and FM states degenerate. Based on the band structure obtained and the work function, it is found that the T-phase and H-phase are capable of forming an efficient p-n heterostructure. Due to spontaneous charge transfer at the interface, a gapless semiconductor is formed in our HSE06 calculations. We also find that the twist angle between the monolayers has a negligible impact on the band structure of the heterostructure in its spin-down channel. Moreover, the tVS2/hVS2 heterostructure is found to switch from a gapless semiconductor to a metal or a half-metal under some given biaxial or uniaxial strains. Therefore, the heterostructure could be a half-metallic property with strains, realizing 100% polarization at the Fermi level. Our study provides the possibility of realizing 100% spin-polarization at the Fermi level in these FM vdW heterostructures, which is significant for further spin transport exploration.

14.
Environ Pollut ; 266(Pt 1): 115413, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32828026

RESUMO

A microbially facilitated approach was developed to degrade 2, 2', 4, 4'-tetrabrominated diphenyl ether (BDE-47). This approach consisted of biological production of Fe(II) and H2O2 by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 during the repetitive anoxic/oxic cycles and abiotic production of hydroxyl radical (HO●) with the biologically produced Fe(II) and H2O2 via Fenton reaction. Under the condition tested, BDE-47 did not inhibit the growth of S. oneidensis MR-1. Water soluble Fe(III)-citrate and the solid minerals ferrihydrite [Fe(III)2O3•0.5H2O] and goethite [Fe(III)OOH] were tested in this study. Under anoxic condition, the amounts of Fe(II) produced by S. oneidensis MR-1 varied among the Fe(III)s tested, which decreased in the order of Fe(III)-citrate > ferrihydrite > goethite. Under subsequent oxic condition, H2O2 was produced via O2 reduction by S. oneidensis MR-1. The amounts of H2O2 detected also varied, which decreased in the order of the reactions with Fe(III)-citrate > goethite > ferrihydrite. S. oneidensis MR-1 maintained its ability to produce Fe(II) and H2O2 for up to seven anoxic/oxic cycles. At each end of anoxic/oxic cycle, HO● was detected. The amount of HO● produced decreased in the order of the reactions with ferrihydrite > goethite > Fe(III)-citrate, which was opposite to that of H2O2 detected. Compared to the controls without HO●, the amounts of BDE-47 in the reactions with HO● decreased. The more HO● in the reaction, the less amount of BDE-47 detected. Furthermore, no BDE-47 degradation was observed when HO● was scavenged or ferrihydrite was either omitted or replaced by nitrate. Finally, identification of degradation products, such as hydroxylated BDE-47 and trisBDE, dibromophenol and monobromophenol, suggested that OH-addition and Br-substitution by HO● were the main mechanisms for degrading BDE-47. Collectively, all these results demonstrated for the first time that the Fenton reaction driven by S. oneidensis MR-1 degraded BDE-47 effectively.


Assuntos
Shewanella , Compostos Férricos , Éteres Difenil Halogenados , Peróxido de Hidrogênio , Ferro , Metais , Oxirredução
15.
Science ; 369(6506): 984-988, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820125

RESUMO

Germinal center (GC) responses potentiate the generation of follicular regulatory T (TFR) cells. However, the molecular cues driving TFR cell formation remain unknown. Here, we show that sclerostin domain-containing protein 1 (SOSTDC1), secreted by a subpopulation of follicular helper T (TFH) cells and T-B cell border-enriched fibroblastic reticular cells, is developmentally required for TFR cell generation. Fate tracking and transcriptome assessment in reporter mice establishes SOSTDC1-expressing TFH cells as a distinct T cell population that develops after SOSTDC1- TFH cells and loses the ability to help B cells for antibody production. Notably, Sostdc1 ablation in TFH cells results in substantially reduced TFR cell numbers and consequently elevated GC responses. Mechanistically, SOSTDC1 blocks the WNT-ß-catenin axis and facilitates TFR cell differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos B/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Centro Germinativo/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Mutantes , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
16.
J Virol Methods ; 285: 113921, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32598896

RESUMO

In order to establish a high-throughput identification technique that simultaneously detects six major pathogens including APP, HPS, PRRSV, Mhp, PCV-2 and CSFV, six pairs of primers and probes were designed based on the specific conservative sequences of the pathogens, a multiplex PCR system was developed, hybrid parameters were optimized, and evaluation of the technology was performed. The results showed that the present detection method had a sensitivity of 5.8 × 102copies/µL for APP, 7.8 × 103 copies/µL for HPS, 6.8 × 103 copies/µL for Mhp, 6.3 × 102 copies/µL for PCV-2, 4.8 × 103 copies/µL for PRRSV, and 5.5 × 102 copies/µL for CSFV, respectively; and it produced no cross reaction against the other nine pathogens like swine-origin pseudorabies virus, porcine parvovirus, Japanese B encephalitis virus, swine vesicular disease virus, vesicular stomatitis virus, foot-and-mouth disease virus, bluetongue virus, peste des petits ruminants virus and salmonella. Application of the multiplex oligonucleotide microarray established here to testing 285 clinical blood samples indicated a single infection rate of 18.2 % (52/285) and a mixed infection rate of 6.3 % (18/285) which were consistent with the results of the sequencing verification. This technique might serve as a rapid and high-throughput method of detection for epidemic investigation and clinical diagnosis of multiple pathogens.


Assuntos
Bactérias/isolamento & purificação , Coinfecção , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças dos Suínos/diagnóstico , Vírus/isolamento & purificação , Animais , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/veterinária , China/epidemiologia , Coinfecção/diagnóstico , Coinfecção/veterinária , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade , Suínos , Viroses/diagnóstico , Viroses/veterinária
17.
Mol Psychiatry ; 25(5): 977-992, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31142818

RESUMO

Stressful life events induce abnormalities in emotional and cognitive behaviour. The endogenous opioid system plays an essential role in stress adaptation and coping strategies. In particular, the µ-opioid receptor (µR), one of the major opioid receptors, strongly influences memory processing in that alterations in µR signalling are associated with various neuropsychiatric disorders. However, it remains unclear whether µR signalling contributes to memory impairments induced by acute stress. Here, we utilized pharmacological methods and cell-type-selective/non-cell-type-selective µR depletion approaches combined with behavioural tests, biochemical analyses, and in vitro electrophysiological recordings to investigate the role of hippocampal µR signalling in memory-retrieval impairment induced by acute elevated platform (EP) stress in mice. Biochemical and molecular analyses revealed that hippocampal µRs were significantly activated during acute stress. Blockage of hippocampal µRs, non-selective deletion of µRs or selective deletion of µRs on GABAergic neurons (µRGABA) reversed EP-stress-induced impairment of memory retrieval, with no effect on the elevation of serum corticosterone after stress. Electrophysiological results demonstrated that stress depressed hippocampal GABAergic synaptic transmission to CA1 pyramidal neurons, thereby leading to excitation/inhibition (E/I) imbalance in a µRGABA-dependent manner. Pharmaceutically enhancing hippocampal GABAA receptor-mediated inhibitory currents in stressed mice restored their memory retrieval, whereas inhibiting those currents in the unstressed mice mimicked the stress-induced impairment of memory retrieval. Our findings reveal a novel pathway in which endogenous opioids recruited by acute stress predominantly activate µRGABA to depress GABAergic inhibitory effects on CA1 pyramidal neurons, which subsequently alters the E/I balance in the hippocampus and results in impairment of memory retrieval.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Receptores Opioides mu/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
J Mol Neurosci ; 67(4): 643-653, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30840225

RESUMO

Angiogenesis is induced immediately after cerebral ischemia and plays a pivotal role in the strategy against ischemic injury. We hypothesized that the coordinated interaction between microvessels and neurons was altered immediately after stroke, and microvessels and neurons would show the temporal specificity of angiogenic gene profiles after cerebral ischemia. Microvessels and neurons were harvested in the ischemic penumbra of rat brain using the PixCell II laser capture microdissection (LCM) instrument. After RNA isolation, T7 and gene-specific primer RNA linear amplification were performed, and angiogenic functional grouping cDNA profiling was analyzed in LCM samples. cDNA microarray results showed there were 35 (36.46%) and 27 (28.13%) genes expression changes in the microvessels, while 25 (26.04%) and 31 (32.29%) genes were changed in the neurons at 2 h and 24 h after cerebral ischemia. Members of growth factors and receptors, cytokines and chemokines, adhesion molecules, matrix proteins, proteases, and inhibitors showed temporal and spatial differentiation in the microvessels and neurons after cerebral ischemia. This finding will help to understand the coordination and interaction between microvessels and neurons, and to elucidate the molecular mechanisms of angiogenesis after brain ischemic injury.


Assuntos
Infarto da Artéria Cerebral Média/metabolismo , Microvasos/metabolismo , Neovascularização Fisiológica/genética , Neurônios/metabolismo , Transcriptoma , Animais , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média/patologia , Microdissecção e Captura a Laser , Microvasos/patologia , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
19.
Sci China Life Sci ; 62(10): 1275-1286, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30900163

RESUMO

Microbial extracellular electron transfer (EET) is electron exchanges between the quinol/quinone pools in microbial cytoplasmic membrane and extracellular substrates. Microorganisms with EET capabilities are widespread in Earth hydrosphere, such as sediments of rivers, lakes and oceans, where they play crucial roles in biogeochemical cycling of key elements, including carbon, nitrogen, sulfur, iron and manganese. Over the past 12 years, significant progress has been made in mechanistic understanding of microbial EET at the molecular level. In this review, we focus on the molecular mechanisms underlying the microbial ability for extracellular redox transformation of iron, direct interspecies electron transfer as well as long distance electron transfer mediated by the cable bacteria in the hydrosphere.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Carbono/metabolismo , Ecossistema , Transporte de Elétrons , Fenômenos Geológicos , Hidroquinonas/química , Ferro/metabolismo , Lagos , Manganês/metabolismo , Nitrogênio/metabolismo , Oxirredução , Quinonas/química , Enxofre/metabolismo , Água , Microbiologia da Água
20.
Front Neurosci ; 13: 71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800053

RESUMO

Acute stress impairs recall memory through the facilitation of long-term depression (LTD) of hippocampal synaptic transmission. The endogenous opioid system (EOS) plays essential roles in stress-related emotional and physiological responses. Specifically, behavioral studies have shown that the impairment of memory retrieval induced by stressful events involves the activation of opioid receptors. However, it is unclear whether signaling mediated by µ-opioid receptors (µRs), one of the three major opioid receptors, participates in acute stress-related hippocampal LTD facilitation. Here, we examined the effects of a single elevated platform (EP) stress exposure on excitatory synaptic transmission and plasticity at the Schaffer collateral-commissural (SC) to CA1 synapses by recording electrically evoked field excitatory postsynaptic potentials and population spikes of hippocampal pyramidal neurons in anesthetized adult mice. EP stress exposure attenuated GABAergic feedforward and feedback inhibition of CA1 pyramidal neurons and facilitated low-frequency stimulation (LFS)-induced long-term depression (LTD) at SC-CA1 glutamatergic synapses. These effects were reproduced by exogenously activating µRs in unstressed mice. The specific deletion of µRs on GABAergic neurons (µRGABA) not only prevented the EP stress-induced memory impairment but also reversed the EP stress-induced attenuation of GABAergic inhibition and facilitation of LFS-LTD. Our results suggest that acute stress endogenously activates µRGABA to attenuate hippocampal GABAergic signaling, thereby facilitating LTD induction at excitatory synapses and eliciting memory impairments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...