Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Neural Regen Res ; 18(4): 889-894, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204859

RESUMO

Exosome-derived long non-coding RNAs (lncRNAs) are extensively engaged in recovery and repair of the injured spinal cord, through different mechanisms. However, to date no study has systematically evaluated the differentially expressed lncRNAs involved in the development of spinal cord injury. Thus, the aim of this study was to identify key circulating exosome-derived lncRNAs in a rat model of spinal cord injury and investigate their potential actions. To this end, we established a rat model of spinal cord hemisection. Circulating exosomes were extracted from blood samples from spinal cord injury and control (sham) rats and further identified through Western blotting and electron microscopy. RNA was isolated from the exosomes and sequenced. The enrichment analysis demonstrated that there were distinctively different lncRNA and mRNA expression patterns between the two groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) functional analysis were performed to determine the possible involvements of upregulated and downregulated lncRNAs in various pathways and different biological processes, as well as their cellular locations and molecular functions. Furthermore, quantitative reverse transcription-polymerase chain reaction showed that the expression of five lncRNAs--ENSRN0T00000067908, XR_590093, XR_591455, XR_360081, and XR_346933--was increased, whereas the expression of XR_351404, XR_591426, XR_353833, XR_590076, and XR_590719 was decreased. Of note, these 10 lncRNAs were at the center of the lncRNA-miRNA-mRNA coexpression network, which also included 198 mRNAs and 41 miRNAs. Taken together, our findings show that several circulating exosomal lncRNAs are differentially expressed after spinal cord injury, suggesting that they may be involved in spinal cord injury pathology and pathogenesis. These lncRNAs could potentially serve as targets for the clinical diagnosis and treatment of spinal cord injury.

2.
J Biomed Mater Res B Appl Biomater ; 110(9): 2100-2109, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35441415

RESUMO

Peripheral nerve injury (PNI) exists widely and seriously affects patients' daily lives. However, the effect of nerve repair is still limited, and only 50% of patients can recover useful functions. To overcome these obstacles, collagen-coated poly(lactic-co-glycolic acid) (PLGA) conduits loaded with CBD-IGF-1 were designed and tested in vitro and in vivo. The physical characterization of the conduit was tested by scanning electron microscopy, and the static water contact angle, release rate, and nerve regeneration ability of the conduit were verified in a rat sciatic nerve injury model. The results showed that the PLGA/col/CBD-IGF-1 conduit had a rough surface and good hydrophilicity. CBD-IGF-1 could be released slowly from the PLGA/col/CBD-IGF-1 conduit. In the in vivo experiment, gait analysis and electrophysiological evaluation showed that the sciatic functional index and electrophysiological parameters were best in the group treated with the PLGA/col/CBD-IGF-1 conduit. The pathological examination results for the sciatic nerve and gastrocnemius muscle in the group treated with the PLGA/col/CBD-IGF-1 conduit were better than those in the other three groups. In short, this study demonstrated the beneficial effects of CBD-IGF-1 in nerve regeneration. The PLGA/col/CBD-IGF-1 conduit has therapeutic potential for use in the treatment of PNI.


Assuntos
Traumatismos dos Nervos Periféricos , Ácido Poliglicólico , Animais , Colágeno/farmacologia , Glicóis/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Ácido Láctico/química , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Ratos , Nervo Isquiático/fisiologia
3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-951335

RESUMO

The outbreak of 2019-nCoV in the central Chinese city of Wuhan at the end of 2019 poses unprecedent public health challenges to both China and the rest world1. The new coronavirus shares high sequence identity to SARS-CoV and a newly identified bat coronavirus2. While bats may be the reservoir host for various coronaviruses, whether 2019-nCoV has other hosts is still ambiguous. In this study, one coronavirus isolated from Malayan pangolins showed 100%, 98.2%, 96.7% and 90.4% amino acid identity with 2019-nCoV in the E, M, N and S genes, respectively. In particular, the receptor-binding domain of the S protein of the Pangolin-CoV is virtually identical to that of 2019-nCoV, with one amino acid difference. Comparison of available genomes suggests 2019-nCoV might have originated from the recombination of a Pangolin-CoV-like virus with a Bat-CoV-RaTG13-like virus. Infected pangolins showed clinical signs and histopathological changes, and the circulating antibodies reacted with the S protein of 2019-nCoV. The isolation of a coronavirus that is highly related to 2019-nCoV in the pangolins suggests that these animals have the potential to act as the intermediate host of 2019-nCoV. The newly identified coronavirus in the most-trafficked mammal could represent a continuous threat to public health if wildlife trade is not effectively controlled.

4.
Acta Pharmaceutica Sinica ; (12): 700-708, 2013.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-235607

RESUMO

A growing body of evidence suggests that p300 histone acetyltransferase plays important roles in cancer cell differentiation and proliferation. Here, we employed structure-based hierarchical virtual screening method to identify novel lead compounds of p300 histone acetyltransferase. From a screening library containing approximate 100 000 diverse druglike compounds, 33 compounds were chosen for experimental testing and one compound, 4-acetyl-2-methyl-N-morpholino-3,4-dihydro-2H-benzo[b][1, 4]thiazine-7-sulfonamide (17), showed as micromolar inhibitor. Based on its predicted binding pose, we investigated its binding characteristics by designing two series of structural modifications. The obtained structure-activity relationship results are consistent with the predicted binding model. We expect that the identified novel p300 histone acetyltransferase inhibitors will serve as starting points for further development of more potent and specific histone acetyltransferase inhibitors.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Química , Estrutura Molecular , Morfolinas , Química , Relação Estrutura-Atividade , Sulfonamidas , Química , Fatores de Transcrição de p300-CBP , Química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...