Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928503

RESUMO

Ischemic heart disease (IHD) remains a major global health concern, with ischemia-reperfusion injury exacerbating myocardial damage despite therapeutic interventions. In this study, we investigated the role of tropomyosin 3 (TPM3) in protecting cardiomyocytes against hypoxia-induced injury and oxidative stress. Using the AC16 and H9c2 cell lines, we established a chemical hypoxia model by treating cells with cobalt chloride (CoCl2) to simulate low-oxygen conditions. We found that CoCl2 treatment significantly upregulated the expression of hypoxia-inducible factor 1 alpha (HIF-1α) in cardiomyocytes, indicating the successful induction of hypoxia. Subsequent morphological and biochemical analyses revealed that hypoxia altered cardiomyocyte morphology disrupted the cytoskeleton, and caused cellular damage, accompanied by increased lactate dehydrogenase (LDH) release and malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) activity, indicative of oxidative stress. Lentivirus-mediated TPM3 overexpression attenuated hypoxia-induced morphological changes, cellular damage, and oxidative stress imbalance, while TPM3 knockdown exacerbated these effects. Furthermore, treatment with the HDAC1 inhibitor MGCD0103 partially reversed the exacerbation of hypoxia-induced injury caused by TPM3 knockdown. Protein-protein interaction (PPI) network and functional enrichment analysis suggested that TPM3 may modulate cardiac muscle development, contraction, and adrenergic signaling pathways. In conclusion, our findings highlight the therapeutic potential of TPM3 modulation in mitigating hypoxia-associated cardiac injury, suggesting a promising avenue for the treatment of ischemic heart disease and other hypoxia-related cardiac pathologies.


Assuntos
Hipóxia Celular , Citoesqueleto , Miócitos Cardíacos , Estresse Oxidativo , Tropomiosina , Animais , Ratos , Linhagem Celular , Cobalto/farmacologia , Citoesqueleto/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Tropomiosina/metabolismo , Tropomiosina/genética
2.
Pharmacol Res ; 205: 107216, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761883

RESUMO

Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and it is associated with a combination of genetic, environmental, and microbial risk factors. Helicobacter pylori (H. pylori) is classified as a type I carcinogen, however, the exact regulatory mechanisms underlying H. pylori-induced GC are incompletely defined. MicroRNAs (miRNAs), one of small non-coding RNAs, negatively regulate gene expression through binding to their target genes. Dysregulation of miRNAs is crucial in human cancer. A noteworthy quantity of aberrant miRNAs induced by H. pylori through complex regulatory networks have been identified. These miRNAs substantially affect genetic instability, cell proliferation, apoptosis, invasion, metastasis, autophagy, chemoresistance, and the tumor microenvironment, leading to GC development and progression. Importantly, some H. pylori-associated miRNAs hold promise as therapeutic tools and biomarkers for GC prevention, diagnosis, and prognosis. Nonetheless, clinical application of miRNAs remains in its infancy with multiple issues, including sensitivity and specificity, stability, reliable delivery systems, and off-target effects. Additional research on the specific molecular mechanisms and more clinical data are still required. This review investigated the biogenesis, regulatory mechanisms, and functions of miRNAs in H. pylori-induced GC, offering novel insights into the potential clinical applications of miRNA-based therapeutics and biomarkers.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Helicobacter pylori/genética , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/complicações , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica
3.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256104

RESUMO

The progression and metastasis of oral squamous cell carcinoma (OSCC) are highly influenced by cancer stem cells (CSCs) due to their unique self-renewal and plasticity. In this study, data were obtained from a single-cell RNA-sequencing dataset (GSE172577) in the GEO database, and LASSO-Cox regression analysis was performed on 1344 CSCs-related genes to establish a six-gene prognostic signature (6-GPS) consisting of ADM, POLR1D, PTGR1, RPL35A, PGK1, and P4HA1. High-risk scores were significantly associated with unfavorable survival outcomes, and these features were thoroughly validated in the ICGC. The results of nomograms, calibration plots, and ROC curves confirmed the good prognostic accuracy of 6-GPS for OSCC. Additionally, the knockdown of ADM or POLR1D genes may significantly inhibit the proliferation, migration, and invasion of OSCC cells through the JAK/HIF-1 pathway. Furthermore, cell-cycle arrest occurred in the G1 phase by suppressing Cyclin D1. In summary, 6-GPS may play a crucial role in the occurrence and development of OSCC and has the potential to be developed further as a diagnostic, therapeutic, and prognostic tool for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Prognóstico , Neoplasias Bucais/genética , Células-Tronco Neoplásicas , RNA Polimerases Dirigidas por DNA
4.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686101

RESUMO

Cancer is one of the most difficult diseases for human beings to overcome. Its development is closely related to a variety of factors, and its specific mechanisms have been a hot research topic in the field of scientific research. The tropomyosin family (Tpm) is a group of proteins closely related to the cytoskeleton and actin, and recent studies have shown that they play an important role in various cancers, participating in a variety of biological activities, including cell proliferation, invasion, and migration, and have been used as biomarkers for various cancers. The purpose of this review is to explore the research progress of the Tpm family in tumorigenesis development, focusing on the molecular pathways associated with them and their relevant activities involved in tumors. PubMed and Web of Science databases were searched for relevant studies on the role of Tpms in tumorigenesis and development and the activities of Tpms involved in tumors. Data from the literature suggest that the Tpm family is involved in tumor cell proliferation and growth, tumor cell invasion and migration, tumor angiogenesis, tumor cell apoptosis, and immune infiltration of the tumor microenvironment, among other correlations. It can be used as a potential biomarker for early diagnosis, follow-up, and therapeutic response of some tumors. The Tpm family is involved in cancer in a close relationship with miRNAs and LncRNAs. Tpms are involved in tumor tissue invasion and migration as a key link. On this basis, TPM is frequently used as a biomarker for various cancers. However, the specific molecular mechanism of its involvement in cancer progression has not been explained clearly, which remains an important direction for future research.


Assuntos
Neoplasias , Tropomiosina , Humanos , Tropomiosina/genética , Neoplasias/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Actinas , Microambiente Tumoral
5.
Cancers (Basel) ; 15(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37760507

RESUMO

The dual role of necroptosis in inhibiting and promoting tumor development has gradually received much attention because of its essential significance for targeted treatment. Accordingly, this study aims to explore the relationship between necroptosis and oral squamous cell carcinoma (OSCC), and search for novel prognostic factors for OSCC. RNA-seq data and clinical information were downloaded from TCGA and GTEx databases. The prognostic signature of necroptosis-related genes (NRGs) was constructed by univariate Cox regression analysis and the LASSO Cox regression model. Moreover, survival analyses, ROC curves, and nomograms were adopted to further analyze. GO and KEGG analyses and immune infiltration analyses were used for function enrichment and immune feature research in turn. The NRG prognostic signature expression was higher in OSCC tissues than in normal tissues, and the overall survival (OS) rate of the high-expression group was much lower. HPRT1 was proved to be an independent prognostic factor in OSCC. Furthermore, the function enrichment analyses revealed that NRGs were involved in necroptosis, apoptosis, inflammation, and immune reaction. The expression of NRGs was related to immunosuppression in OSCC. Furthermore, the knockdown of HPRT1 could suppress the proliferation and migration of OSCC. In conclusion, the high expression of NRG prognostic signature is associated with poor prognosis in OSCC, and HPRT1 can serve as a novel independent prognostic factor for OSCC.

6.
Diagnostics (Basel) ; 12(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36140611

RESUMO

In previous studies, non-invasive diagnostic biomarkers showed great benefit in the early-stage diagnosis of malignant pleural mesothelioma (MPM). However, the accuracy of different biomarkers was controversial. In this study, meta-analysis and bioinformatics analysis were conducted to compare the accuracy of the following three biomarkers and explore the relationship between the gene expression levels and MPM. A systematic search of meta-analysis was conducted using PubMed, EMBASE and Cochrane Library to identify relevant studies from the inception to March 2021. QUADAS-2 for Quality Assessment of Diagnostic Accuracy Studies was used to evaluate the quality of eligible studies. The meta-analysis was performed utilizing Stata 15.0 and Review Manager 5.4 software. The meta-analysis results showed that 31 studies that involved 8750 participants were included. The pooled sensitivity and specificity (SPE) were 0.90 (95% CI: 0.74, 0.97) and 0.91 (95% CI: 0.84, 0.95) for Fibulin-3, 0.66 (95% CI, 0.51-0.78) and 0.91 (95% CI, 0.82-0.96) for mesothelin (MSLN), 0.68 (95% CI: 0.63,0.73) and 0.86 (95% CI: 0.82,0.90) for soluble mesothelin-related peptides (SMRP), and 0.74 (95% CI, 0.66-0.80) and 0.89 (95% CI, 0.85-0.91) for MSLN + SMRP + Fibulin-3. Compared with the other two biomarkers, Fibulin-3 may be more appropriate to be one of the indicators for combined diagnosis. Bioinformatics analysis showed that the low expression level of the MSLN gene was significantly related to longer survival time and better prognosis of MPM patients. However, considering the limitation in the quality and sample size of the included research, further studies are required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...