Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 325: 117815, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38309487

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Tribulus terrestris L. (TT) is extensively documented in the Tibetan medical literature 'Si Bu Yi Dian', has been used to treat diabetes mellitus for more than a thousand years. However, the underlying mechanisms and comprehensive effects of TT on diabetes have yet to be investigated. AIM OF THE STUDY: The aim of the study was to systemically elucidate the potential mechanisms of TT in treating diabetes mellitus, and further investigate the therapeutic effects of the water extract, small molecular components and saccharides from TT. MATERIALS AND METHODS: Fecal metabolomics was employed to draw the metabolic profile based on UHPLC-Q-TOF-MS/MS. The V3-V4 hypervariable regions of the bacteria 16S rRNA gene were amplified to explore the structural changes of the intestinal microbiome after TT intervention and to analyze the differential microbiota. The microbial metabolites SCFAs were determined by GC-MS, and the BAs and tryptophan metabolites were quantified by UPLC-TQ-MS. Spearman correlation analysis was carried out to comprehensively investigate the relationship among the endogenous metabolites profile, intestinal microbiota and their metabolites. RESULTS: TT exhibited remarkably therapeutic effect on T2DM rats, as evidenced by improved glucolipid metabolism and intestinal barrier integrity, ameliorated inflammation and remission in insulin resistance. A total of 24 endogenous biomarkers were screened through fecal metabolomics studies, which were mainly related to tryptophan metabolism, fatty acid metabolism, bile acid metabolism, steroid hormone biosynthesis and arachidonic acid metabolism. Investigations on microbiomics revealed that TT significantly modulated 18 differential bacterial genera and reversed the disordered gut microbial in diabetes rats. Moreover, TT notably altered the content of gut microbiota metabolites, both in serum and fecal samples. Significant correlation among microbial community, metabolites and T2DM-related indicators was revealed. CONCLUSIONS: The multiple components of TT regulate the metabolic homeostasis of the organism and the balance of intestinal microbiota and its metabolites, which might mediate the anti-diabetic capacity of TT.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Tribulus , Ratos , Animais , Diabetes Mellitus Tipo 2/metabolismo , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem , Triptofano , Metabolômica , Fezes/química
2.
J Colloid Interface Sci ; 658: 678-687, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134676

RESUMO

Organic compounds have become an important electrode material for aqueous electrochemical energy storage. However, organic electrodes still face poor performance in aqueous batteries due to insufficient electrochemical activity. In this work, a novel conjugated quinone compound containing a rich carbonyl group was designed. The quinone compound was synthesized by a simple dehydration reaction of pyrene-4,5,9,10-tetrone (PTO) and 1,2-diaminoanthraquinone (1,2-AQ); it contains 4 pyrazines (CN) from AQ and 4 carbonyl groups (CO), as well as a large number of active sites and the excellent conductivity brought by its conjugated structure ensures the high theoretical capacity of PTO-AQ. In the context of aqueous sodium ion batteries (ASIBs), the electrode material known as PTO-AQ exhibits a notable reversible discharge capacity of 117.9 mAh/g when subjected to a current density of 1 A/g; impressively, it maintained a capacity retention rate of 74.3 % even after undergoing 500 charge and discharge cycles, a performance significantly surpassing that of pristine PTO and AQ. Notably, PTO-AQ exhibits a wide operating voltage range (-1.0-0.5 V) and a cycle life of up to 10,000 cycles. In situ Raman and ex situ measurements were used to analyze the structural changes of PTO-AQ during charge and discharge and the energy storage mechanism in NaAC. The effective promotion of Na+ storage brought by a rich carbonyl group was obtained. The structural energy level and electrostatic potential of PTO-AQ were calculated, and the active center distribution of PTO-AQ was obtained. This work serves as a guide for designing high-performance aqueous organic electrode materials that operate across a wide voltage range while also explaining their energy storage mechanism.

3.
Small ; 19(47): e2304182, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37488687

RESUMO

Aqueous alkali-ion batteries have enormous promise as a kind of safe, reliable, and sustainable energy technologies for power supplies. Although organic molecules with tunable and diverse configurations are potential electroactive materials, their inadequate redox activity and electron affinity hinder the practical application for aqueous alkali-ion storage. Herein, a novel electron-withdrawing carboxyl-substituted dipyridophenazine (CDPPZ) organic molecule is designed and synthesized for aqueous Na+ storage. Significantly, the introduction of carboxyl functional groups not only serves as additional redox-active sites for reversible Na+ coordination, but also causes the rearrangement of intramolecular electron cloud density to reduce the energy level, thereby ensuring the high redox activity and superior electron affinity of the CDPPZ molecule. For portable electronics, a self-supporting, adhesive-free, and flexible CDPPZ@MXene electrode is further constructed by incorporating highly redox-active CDPPZ molecule with MXene nanosheets, which delivers a fast, stable, and unrivaled aqueous Na+ storage capability with a high reversible capacity of 172.6 mAh cm-3 and excellent redox stability over 4000 cycles. In situ dynamic analysis combined with theoretical calculations illustrates the Na+ storage mechanism and corresponding coordinated pathway. Finally, a high-performance flexible aqueous Na-ion battery is fabricated with exceptional energy/power density and remarkable cycling lifespan, further confirming its promising application prospect.

4.
Chem Commun (Camb) ; 58(85): 11925-11928, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36196921

RESUMO

A novel cyano-substituted diquinoxalino-phenazine (CDPZ) organic compound was prepared and integrated with graphene to create a heterostructured electrode material for aqueous Na-ion batteries. With active cyano groups and imino moieties in the CDPZ molecule, the CDPZ@G electrode undergoes highly reversible redox reactions upon Na+ uptake/removal, which is confirmed by electrochemical tests, in situ FTIR analysis and DFT calculations. As a result, the composite electrode achieves superior aqueous Na+ storage with a large specific capacity of ∼265.1 mA h g-1, superior to those of reported organic-based electrodes in alkali-ion aqueous electrolytes.

5.
J Pharm Biomed Anal ; 220: 115007, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36067594

RESUMO

Traditional Chinese medicine (TCM) plays a synergistic and comprehensive pharmacodynamic role of multi-channel and multi-target through its multi-components, showing unique therapeutic advantages in chronic and multi-gene complex diseases. Herb pair is a unique combination of two relatively fixed herbs, which embodies the integrity of TCM theory. In this study, untargeted fecal metabolomics based on MS was used to investigate the action mechanism of Radix ginseng and Schisandra chinensis (GS) herb pair on the complex disease of Alzheimer's disease (AD), and further analyze the therapeutic effects of small molecular components and saccharides of GS on AD. Quantitative analysis of bile acids (BAs) and short-chain fatty acids (SCFAs) further verified the conclusion of untargeted metabolomics. The results of the pharmacodynamics evaluation showed that the AD model was successfully constructed, and each TCM group had a different degree of improvement compared with the AD group. PCA analysis based on untargeted fecal metabolomics showed that the metabolic disorders in AD rats changed significantly over time, and there were different degrees of callback in each TCM group. The result indicated that the GS herb pair can regulate metabolic disorders of AD. Further analysis of therapeutic biomarkers showed that GS mainly regulated the metabolism of bile acid biosynthesis, sphingolipid metabolism, porphyrin and chlorophyll metabolism, etc. to treat AD. This study will help to further understand the pathogenesis of AD from metabolomics, and provide beneficial support for the further study of GS and the clinical treatment of complex diseases with TCM.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Panax , Porfirinas , Schisandra , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Ácidos e Sais Biliares , Biomarcadores/metabolismo , Clorofila , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolômica , Panax/metabolismo , Ratos , Schisandra/metabolismo , Esfingolipídeos/uso terapêutico
6.
Sci Rep ; 12(1): 8760, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610286

RESUMO

7-Met, a derivative of soybean isoflavone, is a natural flavonoid compound that has been reported to have multiple signaling pathways regulation effects. This study investigated the therapeutic effects of 7-Met on mice with atopic dermatitis induced by fluorescein isothiocyanate (FITC), or oxazolone (OXZ). 7-Met ameliorated FITC or OXZ-induced atopic dermatitis symptoms by decreasing ear thickness, spleen index, mast cell activation, neutrophil infiltration and serum IgE levels in female BALB/c mice. In FITC-induced atopic dermatitis mice, 7-Met reduced Th1 cytokines production and regulated Th1/Th2 balance by downregulating the secretion of thymic stromal lymphopoietin (TSLP) via inactivation of the NF-κB pathway. In OXZ-induced atopic dermatitis, 7-Met functioned through the reduction of Th17 cytokine production. Our study showed that 7-Methoxyisoflavone alleviated atopic dermatitis by regulating multiple signaling pathways and downregulating chemokine production.


Assuntos
Dermatite Atópica , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Feminino , Fluoresceína-5-Isotiocianato/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Oxazolona/efeitos adversos , Transdução de Sinais , Pele/metabolismo
7.
Chem Commun (Camb) ; 56(47): 6412-6415, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32391833

RESUMO

Herein, we report morphology controlled growth of layered V2O5 on V2C by the oxidation of V-MXenes at different temperatures and used it as a cathode material for Zn-ion batteries (ZIBs). Hence, the V2O5 nanoparticles are uniformly grown on the V2C nanosheets with interlinked disordered carbon which provide fast diffusion and high rate performance in aqueous zinc-ion batteries.

8.
Adv Sci (Weinh) ; 7(2): 1901975, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993289

RESUMO

Owing to their unique nanosize effect and surface effect, pseudocapacitive quantum dots (QDs) hold considerable potential for high-efficiency supercapacitors (SCs). However, their pseudocapacitive behavior is exploited in aqueous electrolytes with narrow potential windows, thereby leading to a low energy density of the SCs. Here, a film electrode based on dual-confined FeOOH QDs (FQDs) with superior pseudocapacitive behavior in a high-voltage ionic liquid (IL) electrolyte is put forward. In such a film electrode, FQDs are steadily dual-confined in a 2D heterogeneous nanospace supported by graphite carbon nitride (g-C3N4) and Ti-MXene (Ti3C2). Probing of potential-driven ion accumulation elucidates that strong adsorption occurs between the IL cation and the electrode surface with abundant active sites, providing sufficient redox reaction of FQDs in the film electrode. Furthermore, porous g-C3N4 and conductive Ti3C2 act as ion-accessible channels and charge-transfer pathways, respectively, endowing the FQDs-based film electrode with favorable electrochemical kinetics in the IL electrolyte. A high-voltage flexible SC (FSC) based on an ionogel electrolyte is fabricated, exhibiting a high energy density (77.12 mWh cm-3), a high power density, a remarkable rate capability, and long-term durability. Such an FSC can also be charged by harvesting sustainable energy and can effectively power various wearable and portable electronics.

9.
ACS Appl Mater Interfaces ; 9(20): 17051-17059, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28481083

RESUMO

Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm3), volumetric power density (1080 mW/cm3), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.

10.
ACS Appl Mater Interfaces ; 8(47): 32460-32467, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27808498

RESUMO

Nanostructured transition metal carbides (TMCs) with superior electrochemical properties are promising materials for high-efficiency energy-storage applications. Herein one-dimensional molybdenum carbide nanofibers (Mo2C NFs) have been fabricated by a facile and effective electrospinning strategy. Based on the cross-linked network architecture with ultrahigh electronic conductivity, each Mo2C NF is uniformly encapsulated in lamellar manganese dioxide (MnO2) via electrodeposition, forming a self-supported MnO2-Mo2C NF film with excellent electrochemical activity. Remarkably, the highly conductive inner layer of porous Mo2C NFs acts like a "highway" to facilitate charge transport and ionic diffusion, while the MnO2 nanosheets with abundant active area are favorable for the accumulation of effective electric charges. Benefiting from these features, the hybrid film is directly applied as the self-standing electrode of supercapacitors (SCs) without any additives, which delivers considerably large specific capacitance with strong durability in both aqueous and organic (ionic liquid) electrolytes. This work elucidates a feasible way toward heteronanofiber engineering of TMCs on a promising additive-free electrode for flexible and high-performance SCs.

11.
ChemSusChem ; 7(11): 3053-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25146489

RESUMO

Graphene sheet (GS)-ionic liquid (IL) supercapacitors are receiving intense interest because their specific energy density far exceeds that of GS-aqueous electrolytes supercapacitors. The electrochemical properties of ILs mainly depend on their diverse ions, especially anions. Therefore, identifying suitable IL electrolytes for GSs is currently one of the most important tasks. The electrochemical behavior of GSs in a series of ILs composed of 1-ethyl-3-methylimidazolium cation (EMIM(+)) with different anions is systematically studied. Combined with the formula derivation and building models, it is shown that the viscosity, ion size, and molecular weight of ILs affect the electrical conductivity of ILs, and thus, determine the electrochemical performances of GSs. Because the EMIM-dicyanamide IL has the lowest viscosity, ion size, and molecular weight, GSs in it exhibit the highest specific capacitance, smallest resistance, and best rate capability. In addition, because the tetrafluoroborate anion (BF4(-)) has the best electrochemical stability, the GS-[EMIM][BF4] supercapacitor has the widest potential window, and thus, displays the largest energy density. These results may provide valuable information for selecting appropriate ILs and designing high-performance GS-IL supercapacitors to meet different needs.


Assuntos
Grafite/química , Imidazóis/química , Líquidos Iônicos/química , Capacitância Elétrica , Eletrodos , Eletrólitos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...