Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(46): 13930-13937, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36544718

RESUMO

Inspired by life assembly systems, the construction of transient assembly systems with spatiotemporal control is crucial for developing intelligent materials. A widely adopted strategy is to couple the self-assembly with chemical reaction networks. However, orchestrating the kinetics of multiple reactions and assembly/disassembly processes without crosstalk in homogeneous solutions is not an easy task. To address this challenge, we propose a generic strategy by separating components into different phases, therefore, the evolution process of the system could be easily regulated by controlling the transport of components through different phases. Interference of multiple components that are troublesome in homogeneous systems could be diminished. Meanwhile, limited experimental parameters are involved in tuning the mass transfer instead of the complex kinetic matching and harsh reaction selectivity requirements. As a proof of concept, a transient metallo-supramolecular polymer (MSP) with dynamic luminescent color was constructed in an oil-water biphasic system by controlling the diffusion of the deactivator (water molecules) from the water phase into the oil phase. The lifetime of transient MSP could be precisely regulated not only by the content of chemical fuel, but also factors that affect the efficiency of mass transfer in between phases, such as the volume of the water phase, the stirring rate, and the temperature. We believe this strategy can be further extended to multi-compartment systems with passive diffusion or active transport of components, towards life-like complex assembly systems.

2.
J Am Chem Soc ; 144(42): 19410-19416, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36223688

RESUMO

Trace water in organic solvents can play a crucial role in the construction of supramolecular assemblies, which has not gained enough attention until very recent years. Herein, we demonstrate that residual water in organic solvents plays a decisive role in the regulation of the evolution of assembled structures and their functionality. By adding Mg(ClO4)2 into a multi-component organic solution containing terpyridine-based ligand 3Tpy and monodentate imidazole-based ligand M2, the system underwent an unexpected kinetic evolution. Metallo-supramolecular polymers (MSP) formed first by the coordination of 3Tpy and Mg2+, but they subsequently decomposed due to the interference of M2, resulting in a transient MSP system. Further investigation revealed that this occurred because residual water in the solvent and M2 cooperatively coordinated with Mg2+. This allowed M2 to capture Mg2+ from MSP, which led to depolymerization. However, owing to the slow reaction between trace water/M2/Mg2+, the formation of MSP still occurred first. Therefore, water regulated both the thermodynamics and kinetics of the system and was the key factor for constructing the transient MSP. Fine-tuning the water content and other assembly motifs regulated the assembly evolution pathway, tuned the MSP lifetime, and made the luminescent color of the system undergo intriguing transition processes over time.


Assuntos
Imidazóis , Água , Água/química , Ligantes , Solventes/química , Polímeros/química
3.
Chem Sci ; 13(26): 7796-7804, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35865888

RESUMO

Kinetic control over structures and functions of complex assembly systems has aroused widespread interest. Understanding the complex pathway and transient intermediates is helpful to decipher how multiple components evolve into complex assemblies. However, for supramolecular polymerizations, thorough and quantitative kinetic analysis is often overlooked. Challenges remain in collecting the information of structure and content of transient intermediates in situ with high temporal and spatial resolution. Here, the unsolved evolution mechanism of a classical self-sorting supramolecular copolymerization system was addressed by employing multidimensional NMR techniques coupled with a microfluidic technique. Unexpected complex pathways were revealed and quantitatively analyzed. A counterintuitive pathway involving polymerization through the 'error-correction' of non-polymerizable transient intermediates was identified. Moreover, a 'non-classical' step-growth polymerization process controlled by the self-sorting mechanism was unraveled based on the kinetic study. Realizing the existence of transient intermediates during self-sorting can encourage the exploitation of this strategy to construct kinetic steady state assembly systems. Moreover, the strategy of coupling a microfluidic technique with various characterization techniques can provide a kinetic analysis toolkit for versatile assembly systems. The combined approach of coupling thermodynamic and kinetic analyses is indispensable for understanding the assembly mechanisms, the rules of emergence, and the engineering of complex assembly systems.

4.
Light Sci Appl ; 10(1): 85, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875636

RESUMO

Interfacial host-guest complexation offers a versatile way to functionalize nanomaterials. However, the complicated interfacial environment and trace amounts of components present at the interface make the study of interfacial complexation very difficult. Herein, taking the advantages of near-single-molecule level sensitivity and molecular fingerprint of surface-enhanced Raman spectroscopy (SERS), we reveal that a cooperative effect between cucurbit[7]uril (CB[7]) and methyl viologen (MV2+2I-) in aggregating Au NPs originates from the cooperative adsorption of halide counter anions I-, MV2+, and CB[7] on Au NPs surface. Moreover, similar SERS peak shifts in the control experiments using CB[n]s but with smaller cavity sizes suggested the occurrence of the same guest complexations among CB[5], CB[6], and CB[7] with MV2+. Hence, an unconventional exclusive complexation model is proposed between CB[7] and MV2+ on the surface of Au NPs, distinct from the well-known 1:1 inclusion complexation model in aqueous solutions. In summary, new insights into the fundamental understanding of host-guest interactions at nanostructured interfaces were obtained by SERS, which might be useful for applications related to host-guest chemistry in engineered nanomaterials.

5.
Chem Sci ; 10(35): 8076-8082, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31908753

RESUMO

Cage catalysis has emerged as an important approach for mimicking enzymatic reactions by increasing the reaction rate and/or product selectivity of various types of covalent reactions. Here, we extend the catalytic application of cage compounds to the field of non-covalent molecular assembly. Acid-stable chiral imine cages are found to catalyze the supramolecular polymerization of porphyrins with an accelerated assembling rate and increased product enantioselectivity. Because the imine cages have a stronger interaction with porphyrin monomers and a weaker interaction with porphyrin assemblies, they can fully automatically detach from the assembled products without being consumed during the catalytic process. We reveal the kinetics of the auto-detachment of cages and the chirality growth of the assemblies using spectroscopic characterization studies. We find that the passivation groups attached to the cages are important for maintaining the structural stability of the cages during catalyzed assembly, and that the steric geometries of the cages can profoundly affect the efficiency of chiral regulation. This strategy demonstrates a new type of catalytic application of cage compounds in the field of molecular assembly, and paves the way to controlling supramolecular polymerization through a catalytic pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...