Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Clin Genet ; 106(4): 437-447, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39221575

RESUMO

Male infertility due to asthenozoospermia is quite frequent, but its etiology is poorly understood. We recruited two infertile brothers, born to first-cousin parents from Pakistan, displaying idiopathic asthenozoospermia with mild stuttering disorder but no ciliary-related symptoms. Whole-exome sequencing identified a splicing variant (c.916+1G>A) in ARMC3, recessively co-segregating with asthenozoospermia in the family. The ARMC3 protein is evolutionarily highly conserved and is mostly expressed in the brain and testicular tissue of human. The ARMC3 splicing mutation leads to the exclusion of exon 8, resulting in a predicted truncated protein (p.Glu245_Asp305delfs*16). Quantitative real-time PCR revealed a significant decrease at mRNA level for ARMC3 and Western blot analysis did not detect ARMC3 protein in the patient's sperm. Individuals homozygous for the ARMC3 splicing variant displayed reduced sperm motility with frequent morphological abnormalities of sperm flagella. Transmission electron microscopy of the affected individual IV: 2 revealed vacuolation in sperm mitochondria at the midpiece and disrupted flagellar ultrastructure in the principal and end piece. Altogether, our results indicate that this novel homozygous ARMC3 splicing mutation destabilizes sperm flagella and leads to asthenozoospermia in our patients, providing a novel marker for genetic counseling and diagnosis of male infertility.


Assuntos
Astenozoospermia , Consanguinidade , Homozigoto , Linhagem , Splicing de RNA , Cauda do Espermatozoide , Adulto , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patologia , Sequenciamento do Exoma , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Mutação , Splicing de RNA/genética , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Espermatozoides/ultraestrutura , Espermatozoides/patologia
2.
Andrology ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39318356

RESUMO

BACKGROUND: HENMT1 encodes a small RNA methyltransferase that plays a crucial role in mouse spermatogenesis through the methylation of the 3' end of PIWI-interacting RNAs. OBJECTIVES: Our study aims to elucidate the relationship between HENMT1 and male infertility in humans. MATERIALS AND METHODS: A consanguineous family, having a single non-obstructive azoospermia patient was recruited for pathogenic variants screening. The research includes genetic analysis and experimental validation using mouse models. The patient was diagnosed with non-obstructive azoospermia. Whole-exome sequencing and subsequent bioinformatic analyses were performed to screen for candidate pathogenic variants. The pathogenicity of the identified variant was assessed and studied in vivo using a mouse model that mimicked the patient's mutation. RESULTS: Through whole-exome sequencing, we identified a homozygous nonsense variant (c.555G > A, p.Trp185*) in HENMT1 in the patient. The presence of the mutant HENMT1 mRNA was detected in the patient's blood, and the truncated HENMT1 protein was observed in transfected HEK293T cells. The mutant mice modeling this HENMT1 variant displayed an infertile phenotype similar to that of the patient, characterized by spermiogenesis arrest. Further analysis revealed a significant derepression of retrotransposon LINE1 in the testes of the Henmt1 mutant mice, and increased apoptosis of spermatids. DISCUSSION AND CONCLUSION: Our findings provide the evidence of pathogenicity of the identified HENMT1 variant, thus shedding light on the indispensable role of HENMT1 in human spermatogenesis.

3.
New Phytol ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253785

RESUMO

Soil nitrogen (N) significantly influences the interaction between plants and pathogens, yet its impact on host defenses and pathogen strategies via alterations in plant metabolism remains unclear. Through metabolic and genetic studies, this research demonstrates that high-N-input exacerbates tomato bacterial wilt by altering γ-aminobutyric acid (GABA) metabolism of host plants. Under high-N conditions, the nitrate sensor NIN-like protein 7 (SlNLP7) promotes the glutamate decarboxylase 2/4 (SlGAD2/4) transcription and GABA synthesis by directly binding to the promoters of SlGAD2/4. The tomato plants with enhanced GABA levels showed stronger immune responses but remained susceptible to Ralstonia solanacearum. This led to the discovery that GABA produced by the host actually heightens the pathogen's virulence. We identified the R. solanacearum LysR-type transcriptional regulator OxyR protein, which senses host-derived GABA and, upon interaction, triggers a response involving protein dimerization that enhances the pathogen's oxidative stress tolerance by activating the expression of catalase (katE/katGa). These findings reveal GABA's dual role in activating host immunity and enhancing pathogen tolerance to oxidative stress, highlighting the complex relationship between tomato plants and R. solanacearum, influenced by soil N status.

4.
Asian J Androl ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254435

RESUMO

Multiple morphological abnormalities of the flagella (MMAF) represent a severe form of sperm defects leading to asthenozoospermia and male infertility. In this study, we identified a novel homozygous splicing mutation (c.871-4 ACA>A) in the adenylate kinase 7 (AK7) gene by whole-exome sequencing in infertile individuals. Spermatozoa from affected individuals exhibited typical MMAF characteristics, including coiled, bent, short, absent, and irregular flagella. Transmission electron microscopy analysis showed disorganized axonemal structure and abnormal mitochondrial sheets in sperm flagella. Immunofluorescence staining confirmed the absence of AK7 protein from the patients' spermatozoa, validating the pathogenic nature of the mutation. This study provides direct evidence linking the AK7 gene to MMAF-associated asthenozoospermia in humans, expanding the mutational spectrum of AK7 and enhancing our understanding of the genetic basis of male infertility.

5.
Zool Res ; 45(5): 1061-1072, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39245650

RESUMO

The structural integrity of the sperm flagellum is essential for proper sperm function. Flagellar defects can result in male infertility, yet the precise mechanisms underlying this relationship are not fully understood. CCDC181, a coiled-coil domain-containing protein, is known to localize on sperm flagella and at the basal regions of motile cilia. Despite this knowledge, the specific functions of CCDC181 in flagellum biogenesis remain unclear. In this study, Ccdc181 knockout mice were generated. The absence of CCDC181 led to defective sperm head shaping and flagellum formation. Furthermore, the Ccdc181 knockout mice exhibited extremely low sperm counts, grossly aberrant sperm morphologies, markedly diminished sperm motility, and typical multiple morphological abnormalities of the flagella (MMAF). Additionally, an interaction between CCDC181 and the MMAF-related protein LRRC46 was identified, with CCDC181 regulating the localization of LRRC46 within sperm flagella. These findings suggest that CCDC181 plays a crucial role in both manchette formation and sperm flagellum biogenesis.


Assuntos
Camundongos Knockout , Proteínas dos Microtúbulos , Cauda do Espermatozoide , Animais , Masculino , Camundongos , Fertilidade/fisiologia , Flagelos/metabolismo , Flagelos/fisiologia , Motilidade dos Espermatozoides , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/fisiologia , Espermatozoides/fisiologia , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo
6.
Zool Res ; 45(5): 1073-1087, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39245651

RESUMO

Infertility represents a significant health concern, with sperm quantity and quality being crucial determinants of male fertility. Oligoasthenoteratozoospermia (OAT) is characterized by reduced sperm motility, lower sperm concentration, and morphological abnormalities in sperm heads and flagella. Although variants in several genes have been implicated in OAT, its genetic etiologies and pathogenetic mechanisms remain inadequately understood. In this study, we identified a homozygous nonsense mutation (c.916C>T, p.Arg306*) in the coiled-coil domain containing 146 ( CCDC146) gene in an infertile male patient with OAT. This mutation resulted in the production of a truncated CCDC146 protein (amino acids 1-305), retaining only two out of five coiled-coil domains. To validate the pathogenicity of the CCDC146 mutation, we generated a mouse model ( Ccdc146 mut/mut ) with a similar mutation to that of the patient. Consistently, the Ccdc146 mut/mut mice exhibited infertility, characterized by significantly reduced sperm counts, diminished motility, and multiple defects in sperm heads and flagella. Furthermore, the levels of axonemal proteins, including DNAH17, DNAH1, and SPAG6, were significantly reduced in the sperm of Ccdc146 mut/mut mice. Additionally, both human and mouse CCDC146 interacted with intraflagellar transport protein 20 (IFT20), but this interaction was lost in the mutated versions, leading to the degradation of IFT20. This study identified a novel deleterious homozygous nonsense mutation in CCDC146 that causes male infertility, potentially by disrupting axonemal protein transportation. These findings offer valuable insights for genetic counseling and understanding the mechanisms underlying CCDC146 mutant-associated infertility in human males.


Assuntos
Astenozoospermia , Proteínas Associadas aos Microtúbulos , Animais , Humanos , Masculino , Camundongos , Astenozoospermia/genética , Códon sem Sentido , Homozigoto , Infertilidade Masculina/genética , Mutação , Oligospermia/genética , Motilidade dos Espermatozoides/genética , Espermatozoides , Proteínas Associadas aos Microtúbulos/genética
7.
Plant Cell Environ ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148214

RESUMO

Chilling stress is a major environmental factor that significantly reduces crop production. To adapt to chilling stress, plants activate a series of cellular responses and accumulate an array of metabolites, particularly proline. Here, we report that the transcription factor SlWRKY51 increases proline contents in tomato (Solanum lycopersicum) under chilling stress. SlWRKY51 expression is induced under chilling stress. Knockdown or knockout of SlWRKY51 led to chilling-sensitive phenotypes, with lower photosynthetic capacity and more reactive oxygen species (ROS) accumulation than the wild type (WT). The proline contents were significantly reduced in SlWRKY51 knockdown and knockout lines under chilling stress, perhaps explaining the phenotypes of these lines. D-1-pyrroline-5-carboxylate synthetase (P5CS), which catalyses the rate-limiting step of proline biosynthesis, is encoded by two closely related P5CS genes (P5CS1 and P5CS2). We demonstrate that SlWRKY51 directly activates the expression of P5CS1 under chilling stress. In addition, the VQ (a class of plant-specific proteins containing the conserved motif FxxhVQxhTG) family member SlVQ10 physically interacts with SlWRKY51 to enhance its activation of P5CS1. Our study reveals that the chilling-induced transcription factor SlWRKY51 enhances chilling tolerance in tomato by promoting proline accumulation.

8.
Science ; : eadj8172, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39208083

RESUMO

Despite continuous expansion of the RNA-binding protein (RBP) world, there is a lack of systematic understanding of RBPs in mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-crosslinked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled-coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.

9.
Andrology ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39195011

RESUMO

BACKGROUND: With the development of socio-economic conditions and a shift in attitudes towards fertility, there has been a gradual increase in delayed childbearing since the 2000s. Age plays a significant role in the decline of fertility. However, we know very little about the association of paternal age with reproductive outcomes. OBJECTIVES: To investigate the correlation between advanced paternal age and semen quality, embryo quality, pregnancy, and neonatal outcomes in IVF cycles. MATERIALS AND METHODS: In this study, after excluding female partners aged ≥35 years, we analyzed data from 761 infertile couples who underwent in vitro fertilization cycles at the First Affiliated Hospital of USTC between June 2020 and March 2023. Cases were classified into three groups according to the age of the male: <35 years (530 infertile couples), 35 years ≤ paternal age <40 years (125 infertile couples), and ≥40 years (106 infertile couples). Then, we compared the general clinical data arising from in vitro fertilization cycles between the three groups, including semen parameters, embryonic parameters, and pregnancy and neonatal birth outcomes. RESULTS: Data analysis showed that the duration of infertility and the incidence of secondary infertility were significantly higher in paternal age ≥35 years groups than those aged <35 years (all p < 0.05). We also observed a significant difference between ≥40 years and <35 years groups in terms of the normal fertilization rate, high-quality embryo rate, clinical pregnancy rate, miscarriage rate, live birth rate, Apgar scores, and the low birth weight neonatal rate (all p < 0.05). The group with paternal age ≥40 years showed statistically significant differences in terms of clinical pregnancy rate, miscarriage rate, live birth rate, and low birth weight on multivariable logistic regression (all p < 0.05). CONCLUSION: The results of our study indicate that advanced paternal age (≥40 years) has a significant impact on the embryo quality, pregnancy outcome, and neonatal outcome. Paternal age over 40 years is a risk for in vitro fertilization success rate.

10.
Mol Genet Genomics ; 299(1): 69, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992144

RESUMO

TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.


Assuntos
Homozigoto , Infertilidade Masculina , Mutação de Sentido Incorreto , Cauda do Espermatozoide , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Paquistão , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Adulto , Linhagem , Astenozoospermia/genética , Astenozoospermia/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Sequenciamento do Exoma , Oligospermia/genética , Oligospermia/patologia , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia
11.
Asian J Androl ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38856307

RESUMO

ABSTRACT: Male infertility is a worldwide health issue, affecting 8%-12% of the global population. Oligoasthenoteratozoospermia (OAT) represents a severe type of male infertility, characterized by reduced sperm count and motility and an increased frequency of sperm with aberrant morphology. Using whole-exome sequencing, this study identified a novel missense mutation (c.848C>A, p.A283E) in the coiled-coil domain-containing 34 gene (CCDC34) in a consanguineous Pakistani family. This rare mutation was predicted to be deleterious and to affect the protein stability. Hematoxylin and eosin staining of spermatozoa from the patient with OAT revealed multiple morphological abnormalities of the flagella and transmission electron microscopy indicated axonemal ultrastructural defects with a lack of outer dynein arms. These findings indicated that CCDC34 plays a role in maintaining the axonemal ultrastructure and the assembly or stability of the outer dynein arms, thus expanding the phenotypic spectrum of CCDC34 missense mutations.

12.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892039

RESUMO

High-mobility group B (HMGB) proteins are a class of non-histone proteins associated with eukaryotic chromatin and are known to regulate a variety of biological processes in plants. However, the functions of HMGB genes in tomato (Solanum lycopersicum) remain largely unexplored. Here, we identified 11 members of the HMGB family in tomato using BLAST. We employed genome-wide identification, gene structure analysis, domain conservation analysis, cis-acting element analysis, collinearity analysis, and qRT-PCR-based expression analysis to study these 11 genes. These genes were categorized into four groups based on their unique protein domain structures. Despite their structural diversity, all members contain the HMG-box domain, a characteristic feature of the HMG superfamily. Syntenic analysis suggested that tomato SlHMGBs have close evolutionary relationships with their homologs in other dicots. The promoter regions of SlHMGBs are enriched with numerous cis-elements related to plant growth and development, phytohormone responsiveness, and stress responsiveness. Furthermore, SlHMGB members exhibited distinct tissue-specific expression profiles, suggesting their potential roles in regulating various aspects of plant growth and development. Most SlHMGB genes respond to a variety of abiotic stresses, including salt, drought, heat, and cold. For instance, SlHMGB2 and SlHMGB4 showed positive responses to salt, drought, and cold stresses. SlHMGB1, SlHMGB3, and SlHMGB8 were involved in responses to two types of stress: SlHMGB1 responded to drought and heat, while SlHMGB3 and SlHMGB8 responded to salt and heat. SlHMGB6 and SlHMGB11 were solely regulated by drought and heat stress, respectively. Under various treatment conditions, the number of up-regulated genes significantly outnumbered the down-regulated genes, implying that the SlHMGB family may play a crucial role in mitigating abiotic stress in tomato. These findings lay a foundation for further dissecting the precise roles of SlHMGB genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum lycopersicum , Perfilação da Expressão Gênica , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Estresse Fisiológico
14.
Plant Physiol Biochem ; 211: 108708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733938

RESUMO

S-Adenosyl-L-methionine (SAM) is widely involved in plant growth, development, and abiotic stress response. SAM synthetase (SAMS) is the key enzyme that catalyzes the synthesis of SAM from methionine and ATP. However, the SAMS gene family has not been identified and their functions have not been characterized in most Cucurbitaceae plants. Here, a total of 30 SAMS genes were identified in nine Cucurbitaceae species and they were categorized into 3 subfamilies. Physicochemical properties and gene structure analysis showed that the SAMS protein members are tightly conserved. Further analysis of the cis-regulatory elements (CREs) of SAMS genes' promoter implied their potential roles in stress tolerance. To further understand the molecular functions of SAMS genes, watermelon SAMSs (ClSAMSs) were chosen to analyze the expression patterns in different tissues and under various abiotic stress and hormone responses. Among the investigated genes, ClSAMS1 expression was observed in all tissues and found to be up-regulated by abiotic stresses including salt, cold and drought treatments as well as exogenous hormone treatments including ETH, SA, MeJA and ABA. Furthermore, knockdown of ClSAMS1 via virus-induced gene silencing (VIGS) decreased SAM contents in watermelon seedings. The pTRSV2-ClSAMS1 plants showed reduced susceptibility to drought, cold and NaCl stress, indicating a positive role of ClSAMS1 in abiotic stresses tolerance. Those results provided candidate SAMS genes to regulate plant resistance against abiotic stresses in Cucurbitaceae plants.


Assuntos
Citrullus , Cucurbitaceae , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Citrullus/genética , Citrullus/metabolismo , Citrullus/enzimologia , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Família Multigênica , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Filogenia , Genes de Plantas , Genoma de Planta/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética
15.
J Cell Mol Med ; 28(7): e18215, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38509755

RESUMO

Oligoasthenoteratospermia (OAT), characterized by abnormally low sperm count, poor sperm motility, and abnormally high number of deformed spermatozoa, is an important cause of male infertility. Its genetic basis in many affected individuals remains unknown. Here, we found that CCDC157 variants are associated with OAT. In two cohorts, a 21-bp (g.30768132_30768152del21) and/or 24-bp (g.30772543_30772566del24) deletion of CCDC157 were identified in five sporadic OAT patients, and 2 cases within one pedigree. In a mouse model, loss of Ccdc157 led to male sterility with OAT-like phenotypes. Electron microscopy revealed misstructured acrosome and abnormal head-tail coupling apparatus in the sperm of Ccdc157-null mice. Comparative transcriptome analysis showed that the Ccdc157 mutation alters the expressions of genes involved in cell migration/motility and Golgi components. Abnormal Golgi apparatus and decreased expressions of genes involved in acrosome formation and lipid metabolism were detected in Ccdc157-deprived mouse germ cells. Interestingly, we attempted to treat infertile patients and Ccdc157 mutant mice with a Chinese medicine, Huangjin Zanyu, which improved the fertility in one patient and most mice that carried the heterozygous mutation in CCDC157. Healthy offspring were produced. Our study reveals CCDC157 is essential for sperm maturation and may serve as a marker for diagnosis of OAT.


Assuntos
Astenozoospermia , Infertilidade Masculina , Proteínas de Membrana , Oligospermia , Animais , Humanos , Masculino , Camundongos , Astenozoospermia/genética , Astenozoospermia/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Camundongos Knockout , Mutação/genética , Oligospermia/genética , Oligospermia/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Proteínas de Membrana/metabolismo
16.
Cell Rep ; 43(3): 113892, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38431841

RESUMO

Hexanucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Due to the lack of trunk neuromuscular organoids (NMOs) from ALS patients' induced pluripotent stem cells (iPSCs), an organoid system was missing to model the trunk spinal neuromuscular neurodegeneration. With the C9orf72 ALS patient-derived iPSCs and isogenic controls, we used an NMO system containing trunk spinal cord neural and peripheral muscular tissues to show that the ALS NMOs could model peripheral defects in ALS, including contraction weakness, neural denervation, and loss of Schwann cells. The neurons and astrocytes in ALS NMOs manifested the RNA foci and dipeptide repeat proteins. Acute treatment with the unfolded protein response inhibitor GSK2606414 increased the glutamatergic muscular contraction 2-fold and reduced the dipeptide repeat protein aggregation and autophagy. This study provides an organoid system for spinal neuromuscular pathologies in ALS and its application for drug testing.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteínas/genética , Dipeptídeos/farmacologia , Dipeptídeos/metabolismo , Expansão das Repetições de DNA
17.
Plants (Basel) ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337927

RESUMO

This investigation focused on the suppressive impact of varying NaHCO3 concentrations on cucumber seed germination and the ameliorative effects of 2,4-Epibrassinolide (EBR). The findings revealed a negative correlation between NaHCO3 concentration and cucumber seed germination, with increased NaHCO3 concentrations leading to a notable decline in germination. Crucially, the application of exogenous EBR significantly counteracted this inhibition, effectively enhancing germination rates and seed vigor. Exogenous EBR was observed to substantially elevate the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), thereby mitigating oxidative damage triggered under NaHCO3 stress conditions. Additionally, EBR improved enzyme activity under alkaline stress conditions and reduced starch content in the seeds. Pertinently, EBR upregulated genes that were associated with gibberellin (GA) synthesis (GA20ox and GA3ox), and downregulated genes that were linked to abscisic acid (ABA) synthesis (NCED1 and NCED2). This led to an elevation in GA3 concentration and a reduction in ABA concentration within the cucumber seeds. Therefore, this study elucidates that alleviating oxidative stress, promoting starch catabolism, and regulating the GA and ABA balance are key mechanisms through which exogenous EBR mitigates the suppression of cucumber seed germination resulting from alkaline stress.

18.
Basic Clin Androl ; 34(1): 4, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317066

RESUMO

BACKGROUND: Acephalic spermatozoa syndrome is a rare type of teratozoospermia causing male infertility due to detachment of the sperm head and flagellum, which precludes fertilization potential. Although loss-of-function variations in several genes, including TSGA10, have been associated with acephalic spermatozoa syndrome, the genetic cause of many cases remains unclear. RESULTS: We recruited a Pakistani family with two infertile brothers who suffered from acephalic spermatozoa syndrome. Through whole-exome sequencing (WES) followed by Sanger sequencing, we identified a novel missense variant in TSGA10 (c.1112T > C, p. Leu371Pro), which recessively co-segregated with the acephalic spermatozoa syndrome within this family. Ultrastructural analyses of spermatozoa from the patient revealed that 98% of flagellar cross-sections displayed abnormal axonemal ultrastructure, in addition to the head-flagellum detachment. Real-time quantitative PCR analysis revealed almost no detectable TSAG10 mRNA and western blot analysis also failed to detect TSAG10 protein in patient's sperm samples while TSGA10 expression was clearly detected in control samples. Consistently, immunofluorescence analysis demonstrated the presence of TSGA10 signal in the midpiece of sperm from the control but a complete absence of TSGA10 signal in sperm from the patient. CONCLUSION: Altogether, our study identifies a novel TSGA10 pathogenic variant as a cause of acephalic spermatozoa syndrome in this family and provides information regarding the clinical manifestations associated with TSGA10 variants in human.


RéSUMé: CONTEXTE: Le syndrome des spermatozoïdes acéphaliques est un type rare de tératozoospermie provoquant une infertilité masculine en raison du détachement de la tête et du flagelle des spermatozoïdes, ce qui exclut une potentielle fécondation. Bien que des variations de perte de fonction dans plusieurs gènes, y compris TSGA10, aient été associées au syndrome des spermatozoïdes acéphaliques, la cause génétique de nombreux cas reste incertaine. RéSULTATS: Nous avons recruté une famille pakistanaise avec deux frères infertiles qui souffraient du syndrome des spermatozoïdes acéphaliques. Grâce au séquençage de l'exome entier (WES) suivi du séquençage Sanger, nous avons identifié un nouveau variant faux-sens dans TSGA10 (c.1112T > C, p. Leu371Pro), qui co-ségréguait de manière récessive avec le syndrome des spermatozoïdes acéphaliques au sein de cette famille. Les analyses ultrastructurales des spermatozoïdes des patients ont révélé que 98% des coupes transversales flagellaires présentaient une ultrastructure axonémiques anormales, en plus du décollement tête-flagelle. L'analyse quantitative par PCR en temps réel n'a révélé presque aucun ARNm TSAG10 détectable; l'analyse par transfert Western n'a pas non plus réussi à détecter la protéine TSAG10 dans les échantillons de sperme des patients, tandis que l'expression de TSGA10 a été clairement détectée dans les échantillons du témoin. De manière cohérente, l'analyse par immunofluorescence a démontré la présence du signal TSGA10 dans la partie médiane des spermatozoïdes du témoin, mais une absence totale de signal TSGA10 chez ceux des patients. CONCLUSION: Dans l'ensemble, notre étude identifie un nouveau variant pathogène de TSGA10 comme cause du syndrome des spermatozoïdes acéphaliques dans cette famille et fournit des informations concernant les manifestations cliniques associées aux variants de TSGA10 chez l'homme. MOTS-CLéS: Infertilité, TSGA10, Spermatozoïdes acéphaliques, Variations faux-sens.

19.
Mol Plant Pathol ; 25(1): e13418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279849

RESUMO

Eukaryotic translation initiation factor 4E (eIF4E), which plays a pivotal role in initiating translation in eukaryotic organisms, is often hijacked by the viral genome-linked protein to facilitate the infection of potyviruses. In this study, we found that the naturally occurring amino acid substitution D71G in eIF4E is widely present in potyvirus-resistant watermelon accessions and disrupts the interaction between watermelon eIF4E and viral genome-linked protein of papaya ringspot virus-watermelon strain, zucchini yellow mosaic virus or watermelon mosaic virus. Multiple sequence alignment and protein modelling showed that the amino acid residue D71 located in the cap-binding pocket of eIF4E is strictly conserved in many plant species. The mutation D71G in watermelon eIF4E conferred resistance against papaya ringspot virus-watermelon strain and zucchini yellow mosaic virus, and the equivalent mutation D55G in tobacco eIF4E conferred resistance to potato virus Y. Therefore, our finding provides a potential precise target for breeding plants resistant to multiple potyviruses.


Assuntos
Aminoácidos , Potyvirus , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Aminoácidos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Doenças das Plantas/genética , Potyvirus/genética , Potyvirus/metabolismo , Citrullus/virologia
20.
J Assist Reprod Genet ; 41(1): 109-120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37831349

RESUMO

PURPOSE: Asthenozoospermia is an important cause of male infertility, and the most serious type is characterized by multiple morphological abnormalities of the sperm flagella (MMAF). However, the precise etiology of MMAF remains unknown. In the current study, we recruited a consanguineous Pakistani family with two infertile brothers suffering from primary infertility due to MMAF without obvious signs of PCD. METHODS: We performed whole-exome sequencing on DNAs of the patients, their parents, and a fertile brother and identified the homozygous missense variant (c.1490C > G (p.P497R) in NPHP4 as the candidate mutation for male infertility in this family. RESULTS: Sanger sequencing confirmed that this mutation recessively co-segregated with the MMAF in this family. In silico analysis revealed that the mutation site is conserved across different species, and the identified mutation also causes abnormalities in the structure and hydrophobic interactions of the NPHP4 protein. Different bioinformatics tools predict that NPHP4p.P497R mutation is pathogenic. Furthermore, Papanicolaou staining and scanning electron microscopy of sperm revealed that affected individuals displayed typical MMAF phenotype with a high percentage of coiled, bent, short, absent, and/or irregular flagella. Transmission electron microscopy images of the patient's spermatozoa revealed significant anomalies in the sperm flagella with the absence of a central pair of microtubules (9 + 0) in every section scored. CONCLUSIONS: Taken together, these results show that the homozygous missense mutation in NPHP4 is associated with MMAF.


Assuntos
Infertilidade Masculina , Irmãos , Humanos , Masculino , Flagelos/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Mutação , Mutação de Sentido Incorreto/genética , Proteínas/genética , Sêmen , Cauda do Espermatozoide/patologia , Espermatozoides/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA