Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37892868

RESUMO

This study aims to highlight recent research work on topics around prosthetic feet through a scientometric analysis and historical review. The most cited publications from the Clarivate Analytics Web of Science Core Collection database were identified and analyzed from 1 January 2000 to 31 October 2022. Original articles, reviews with full manuscripts, conference proceedings, early access documents, and meeting abstracts were included. A scientometric visualization analysis of the bibliometric information related to the publications, including the countries, institutions, journals, references, and keywords, was conducted. A total of 1827 publications met the search criteria in this study. The related publications grouped by year show an overall trend of increase during the two decades from 2000 to 2022. The United States is ranked first in terms of overall influence in this field (n = 774). The Northwestern University has published the most papers on prosthetic feet (n = 84). Prosthetics and Orthotics International has published the largest number of studies on prosthetic feet (n = 151). During recent years, a number of studies with citation bursts and burst keywords (e.g., diabetes, gait, pain, and sensor) have provided clues on the hotspots of prosthetic feet and prosthetic foot trends. The findings of this study are based on a comprehensive analysis of the literature and highlight the research topics on prosthetic feet that have been primarily explored. The data provide guidance to clinicians and researchers to further studies in this field.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36231798

RESUMO

BACKGROUND: Alterations in the lower limb kinematics and kinetics of diabetic patients have been reported in previous studies. Inappropriate choices of orthopedic insole materials, however, fail to prevent diabetic foot ulcers and modify abnormal gait. The aim of this study was to quantitatively compare the effects of contoured insoles with different materials on the kinematics of and kinetics changes in the diabetic elderly during gait. METHODS: There were 21 diabetic patients who participated in this study. Three-dimensional (3D) experimental contoured insoles constructed of soft (i.e., Nora Lunalastik EVA and PORON® Medical 4708) and rigid (i.e., Nora Lunalight A fresh and Pe-Lite) materials with Langer Biomechanics longitudinal PPT® arch pads were adopted. An eight-camera motion capture system (VICON), two force plates, and an insole measurement system-Pedar® with 99 sensors-were utilized to obtain the kinematics and kinetics data. The plug-in lower body gait model landmarks were used for dynamic data acquisition during gait. The corresponding data from five gait cycles were selected and calculated. RESULTS: The range of motions (ROMs) of the ankle joint (p = 0.001) and knee joint (p = 0.044) were significantly influenced when the contoured insoles were worn in comparison to the barefoot condition. The joint moments of the lower limbs with maximum ankle plantarflexion during the loading response and maximum knee and hip flexions were significantly influenced by the use of contoured insoles with different materials in the diabetic elderly. The peak plantar pressure (PPP) of the forefoot (p < 0.001), midfoot (p = 0.009), and rearfoot (p < 0.001) was significantly offloaded by the contoured insoles during the stance phase, whilst the PPP of the rearfoot (p < 0.001) was significantly offloaded during the swing phase. CONCLUSIONS: The contoured insoles, especially those constructed with soft materials, significantly offloaded the PPP during gait-hence accommodating certain abnormal gait patterns more effectively compared to going barefoot.


Assuntos
Diabetes Mellitus , Pé Diabético , Órtoses do Pé , Idoso , Fenômenos Biomecânicos/fisiologia , Pé Diabético/prevenção & controle , Marcha/fisiologia , Humanos , Cinética , Caminhada/fisiologia
3.
Sci Rep ; 12(1): 15395, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100637

RESUMO

To investigate the effect of contoured insoles constructed of different insole materials, including Nora Lunalastik EVA, Nora Lunalight A fresh, Pe-Lite, and PORON Medical 4708 with Langer Biomechanics longitudinal PPT arch pads on offloading plantar pressure on the foot of the elderly with Type 1 or 2 diabetes during gait. Twenty-two elderly with Type 1 or 2 diabetes participated in the study. Their plantar pressure was measured by using an insole measurement system, while the participants walked 10 m in their bare feet or used each experimental insole in random order. The plantar surface was divided into four specific regions including the toes, forefoot, midfoot, and rearfoot. The mean peak pressure (MPP) and pressure-time integral (PTI) of ten steps with or without wearing one of the four insoles were analyzed on the dominant foot and the four specific plantar regions. After completion of the activities, the participants scored each insole from 1 (the least comfortable) to 10 (the most comfortable). The analysis of variance (ANOVA) factor of the insoles had significant effects on the MPP (P < 0.001) and PTI (P = 0.004) in the dominant foot during gait. Pairwise comparison results showed that the MPP and PTI in the dominant foot were significantly lower (P < 0.001) with PORON Medical 4708 than barefoot, Nora Lunalight A fresh, and Pe-Lite. Additionally, the insole materials had a significant effect for the forefoot (P < 0.001) and rearfoot (P < 0.001) in terms of the MPP and PTI compared with the barefoot condition during gait. Regardless of the plantar region, the MPP and PTI values were the lowest when PORON Medical 4708 was used as the insole material among four insole materials. Meanwhile, a significantly lower MPP and PTI can be found in the forefoot and rearfoot with the use of the four experimental insoles when compared with barefoot. The soft insole materials (i.e., PORON medical 4708 and Nora Lunalastik EVA) had a better performance than the rigid insole materials (i.e., Nora Lunalight A fresh, and Pe-Lite) on plantar pressure offloading for diabetic elderly.


Assuntos
Diabetes Mellitus , Sapatos , Idoso , , Marcha , Humanos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...